Emergent Techniques for Assessment of Visual Performance

Emergent Techniques for Assessment of Visual Performance
Title Emergent Techniques for Assessment of Visual Performance PDF eBook
Author National Research Council
Publisher National Academies Press
Pages 75
Release 1985-01-01
Genre Medical
ISBN

Download Emergent Techniques for Assessment of Visual Performance Book in PDF, Epub and Kindle

Recent vision research has led to the emergence of new techniques that offer exciting potential for a more complete assessment of vision in clinical, industrial, and military settings. Emergent Techniques for Assessment of Visual Performance examines four areas of vision testing that offer potential for improved assessment of visual capability including: contrast sensitivity function, dark-focus of accommodation, dynamic visual acuity and dynamic depth tracking, and ambient and focal vision. In contrast to studies of accepted practices, this report focuses on emerging techniques that could help determine whether people have the vision necessary to do their jobs. In addition to examining some of these emerging techniques, the report identifies their usefulness in predicting performance on other visual and visual-motor tasks, and makes recommendations for future research. Emergent Techniques for Assessment of Visual Performance provides summary recommendations for research that will have significant value and policy implications for the next 5 to 10 years. The content and conclusions of this report can serve as a useful resource for those responsible for screening industrial and military visual function.

Visual Processing

Visual Processing
Title Visual Processing PDF eBook
Author Roger Watt
Publisher Psychology Press
Pages 167
Release 2022-03-01
Genre Psychology
ISBN 1317716450

Download Visual Processing Book in PDF, Epub and Kindle

This highly original and interesting monograph puts forward ideas on visual processing and representation in the early stages of visual perception, and examines the computational requirements of the system and its psychological performance. Initially the author considers the computational theory of how the maximum amount of useful information about the scene can be registered from the variations in light intensity in the retinal image. He then goeson to address the question of just what it means to say that the visual system measures spatial aspects of the retinal image, and the consequences of the inevitable distortions that are introduced. He believes that the calculation of spatial position within a distorted metric is not trivial and requires dynamic processes with memory and control. Finally, Dr. Wan argues that the strength of the link between the low-level approaches of psychophysics and computational theory and high-level approaches of cognitive visual function lies in the logic of the arguments that indicate the computational need for control. This Essay will be of great interest to researchers in computer vision, perception, cognitive science and cognitive psychology.

Computational Models of Visual Processing

Computational Models of Visual Processing
Title Computational Models of Visual Processing PDF eBook
Author Michael Landy
Publisher Bradford Book
Pages 406
Release 1991-10-24
Genre
ISBN 9780262527989

Download Computational Models of Visual Processing Book in PDF, Epub and Kindle

The more than twenty contributions in this book, all new and previously unpublished, provide an up-to-date survey of contemporary research on computational modeling of the visual system. The approaches represented range from neurophysiology to psychophysics, and from retinal function to the analysis of visual cues to motion, color, texture, and depth. The contributions are linked thematically by a consistent consideration of the links between empirical data and computational models in the study of visual function. An introductory chapter by Edward Adelson and James Bergen gives a new and elegant formalization of the elements of early vision. Subsequent sections treat receptors and sampling, models of neural function, detection and discrimination, color and shading, motion and texture, and 3D shape. Each section is introduced by a brief topical review and summary. ContributorsEdward H. Adelson, Albert J. Ahumada, Jr., James R. Bergen, David G. Birch, David H. Brainard, Heinrich H. Bülthoff, Charles Chubb, Nancy J. Coletta, Michael D'Zmura, John P. Frisby, Norma Graham, Norberto M. Grzywacz, P. William Haake, Michael J. Hawken, David J. Heeger, Donald C. Hood, Elizabeth B. Johnston, Daniel Kersten, Michael S. Landy, Peter Lennie, J. Stephen Mansfield, J. Anthony Movshon, Jacob Nachmias, Andrew J. Parker, Denis G. Pelli, Stephen B. Pollard, R. Clay Reid, Robert Shapley, Carlo L. M. Tiana, Brian A. Wandell, Andrew B. Watson, David R. Williams, Hugh R. Wilson, Yuede. Yang, Alan L. Yuille

Processing, second edition

Processing, second edition
Title Processing, second edition PDF eBook
Author Casey Reas
Publisher MIT Press
Pages 663
Release 2014-12-19
Genre Computers
ISBN 026202828X

Download Processing, second edition Book in PDF, Epub and Kindle

The new edition of an introduction to computer programming within the context of the visual arts, using the open-source programming language Processing; thoroughly updated throughout. The visual arts are rapidly changing as media moves into the web, mobile devices, and architecture. When designers and artists learn the basics of writing software, they develop a new form of literacy that enables them to create new media for the present, and to imagine future media that are beyond the capacities of current software tools. This book introduces this new literacy by teaching computer programming within the context of the visual arts. It offers a comprehensive reference and text for Processing (www.processing.org), an open-source programming language that can be used by students, artists, designers, architects, researchers, and anyone who wants to program images, animation, and interactivity. Written by Processing's cofounders, the book offers a definitive reference for students and professionals. Tutorial chapters make up the bulk of the book; advanced professional projects from such domains as animation, performance, and installation are discussed in interviews with their creators. This second edition has been thoroughly updated. It is the first book to offer in-depth coverage of Processing 2.0 and 3.0, and all examples have been updated for the new syntax. Every chapter has been revised, and new chapters introduce new ways to work with data and geometry. New “synthesis” chapters offer discussion and worked examples of such topics as sketching with code, modularity, and algorithms. New interviews have been added that cover a wider range of projects. “Extension” chapters are now offered online so they can be updated to keep pace with technological developments in such fields as computer vision and electronics. Interviews SUE.C, Larry Cuba, Mark Hansen, Lynn Hershman Leeson, Jürg Lehni, LettError, Golan Levin and Zachary Lieberman, Benjamin Maus, Manfred Mohr, Ash Nehru, Josh On, Bob Sabiston, Jennifer Steinkamp, Jared Tarbell, Steph Thirion, Robert Winter

Computational Models of Visual Processing

Computational Models of Visual Processing
Title Computational Models of Visual Processing PDF eBook
Author Michael S. Landy
Publisher MIT Press
Pages 420
Release 1991
Genre Computer simulation
ISBN 9780262121552

Download Computational Models of Visual Processing Book in PDF, Epub and Kindle

The more than twenty contributions in this book, all new and previously unpublished, provide an up-to-date survey of contemporary research on computational modeling of the visual system. The approaches represented range from neurophysiology to psychophysics, and from retinal function to the analysis of visual cues to motion, color, texture, and depth. The contributions are linked thematically by a consistent consideration of the links between empirical data and computational models in the study of visual function. An introductory chapter by Edward Adelson and James Bergen gives a new and elegant formalization of the elements of early vision. Subsequent sections treat receptors and sampling, models of neural function, detection and discrimination, color and shading, motion and texture, and 3D shape. Each section is introduced by a brief topical review and summary. ContributorsEdward H. Adelson, Albert J. Ahumada, Jr., James R. Bergen, David G. Birch, David H. Brainard, Heinrich H. Bülthoff, Charles Chubb, Nancy J. Coletta, Michael D'Zmura, John P. Frisby, Norma Graham, Norberto M. Grzywacz, P. William Haake, Michael J. Hawken, David J. Heeger, Donald C. Hood, Elizabeth B. Johnston, Daniel Kersten, Michael S. Landy, Peter Lennie, J. Stephen Mansfield, J. Anthony Movshon, Jacob Nachmias, Andrew J. Parker, Denis G. Pelli, Stephen B. Pollard, R. Clay Reid, Robert Shapley, Carlo L. M. Tiana, Brian A. Wandell, Andrew B. Watson, David R. Williams, Hugh R. Wilson, Yuede. Yang, Alan L. Yuille

The Neurobiology of Cognition and Behavior

The Neurobiology of Cognition and Behavior
Title The Neurobiology of Cognition and Behavior PDF eBook
Author John Hart (Jr.)
Publisher Oxford University Press
Pages 257
Release 2016
Genre Medical
ISBN 0190219033

Download The Neurobiology of Cognition and Behavior Book in PDF, Epub and Kindle

"Neurobiology of Cognition and Behavior" is a cognitive neuroscience that maps cognitive/behavioral units with anatomical regions in the human brain. The brain-behavioral associations are based on functional neuroimaging combined with lesion studies. The findings will be used to explain differences in clinical syndromes with videos of patients included.

Functional Anatomy of Visual Processing in the Cerebral Cortex of the Macaque

Functional Anatomy of Visual Processing in the Cerebral Cortex of the Macaque
Title Functional Anatomy of Visual Processing in the Cerebral Cortex of the Macaque PDF eBook
Author Koen Nelissen
Publisher Leuven University Press
Pages 276
Release 2006
Genre Rhesus monkey
ISBN 9789058675415

Download Functional Anatomy of Visual Processing in the Cerebral Cortex of the Macaque Book in PDF, Epub and Kindle

In this thesis, we examined the monkey cortical regions involved in processing of color, visual motion information, and the recognition of actions done by others. The aim was to gain better insight in the functional organization of the monkey visual cortex using in-house developed functional imaging techniques. Two different functional imaging techniques were used in these studies, the double-label deoxyglucose technique (DG) and functional magnetic resonance imaging (fMRI) in the awake monkey (Chapter 2). Both techniques allow to obtain an overview of stimulus-related neural activity throughout the whole brain, integrated over a limited amount of time. The results of the color experiments (Chapter 3) clearly showed that color related information is processed within a group of areas belonging to the ventral stream, which is involved in the perception of objects. Color-related metabolic activity was observed in visual areas V1, V2, V3, V4 and inferotemporal cortex (area TEO and TE). These findings set to rest the longstanding controversial claims that color would be processed almost selectively in one extrastriate visual area (V4) (Zeki SM, Brain Res 1973 53: 422-427). These results also show the usefulness of whole brain functional mapping techniques, as a complimentary approach to single cell measurements. In Chapter 4, we investigated which regions in the superior temporal sulcus (STS) of the monkey are involved in the analysis of motion. While the caudal part of the STS has been studied extensively, including area MT/V5 and MST, little is known about motion sensitivity in more anterior-ventral STS regions. Using fMRI, we were able to localize and delineate six different motion sensitive regions in the STS. One of these regions, that we termed 1st (lower superior temporal), had not been described so far. We were able to further characterize the six motion sensitive regions, using a wide variety of motion-sensitivity tests. The results of the latter tests suggested that motion related information might be processed along a second pathway within the STS, in addition to the MT-MST path (which is involved in the perception of heading). This second pathway, which includes the more rostral motion sensitive STS regions (FST, 1st and STPm) is possibly involved in the visual processing of biological movements (movements of animate objects) and actions. Finally, we investigated how and where in the monkey brain visual information about actions done is processed (Chapter 5 and 6). We found (Chapter 5) that, in agreement with earlier single unit results, the observation of grasping movements activates several regions in the premotor cortex of the monkey. Remarkable is that these premotor regions predominantly have a motor function, coding different types of higher order motor acts (for instance grasping of an object). These results are in agreement with earlier suggestions that we are able to understand actions done by others, because observation of a particular motor act activates our own motor representation of the same act. Furthermore, these studies suggested that within the frontal cortex of the monkey, there is a distinction between context-dependent (a person grasping) and more abstract (a hand grasping) action representations. In Chapter 6 we studied two other regions which are involved in the processing of visual information of actions done by others, the superior temporal sulcus (STS) and the parietal cortex. In the parietal cortex, we found a similar distinction between context-dependent and more abstract action representations as observed in prefrontal cortex. These results suggest that the parietal cortex is not only involved in the visual control of action planning, but also in the visual processing of actions performed by others. Based upon anatomical connections between the STS, parietal and frontal regions and motion-, form- and action-related functional properties of the former regions, we tentatively suggest how information about actions done by others might be sent from the STS to the frontal cortex along three different pathways. The latter working hypothesis will be tested in the future by additional fMRI control experiments and by combining fMRI, inactivation and microstimulation experiments while monkeys perform grasping tasks and/or view actions performed by others.