Visual Information Retrieval
Title | Visual Information Retrieval PDF eBook |
Author | Alberto del Bimbo |
Publisher | Princeton University Press |
Pages | 296 |
Release | 1999-06-03 |
Genre | Computers |
ISBN | 9781558606241 |
The increasing use of multimedia in computer applications has increased the relevance of visual databases. These databases now need new methods for archiving and retrieving information, and this text concentrates on meeting such a need.
Principles of Visual Information Retrieval
Title | Principles of Visual Information Retrieval PDF eBook |
Author | Michael S. Lew |
Publisher | Springer Science & Business Media |
Pages | 366 |
Release | 2013-03-14 |
Genre | Computers |
ISBN | 1447137027 |
This text introduces the basic concepts and techniques in VIR. In doing so, it develops a foundation for further research and study. Divided into two parts, the first part describes the fundamental principles. A chapter is devoted to each of the main features of VIR, such as colour, texture and shape-based search. There is coverage of search techniques for time-based image sequences or videos, and an overview of how to combine all the basic features described and integrate them into the search process. The second part looks at advanced topics such as multimedia query. This book is essential reading for researchers in VIR, and final-year undergraduate and postgraduate students on courses such as Multimedia Information Retrieval, Multimedia Databases, and others.
Visual Information Retrieval Using Java and LIRE
Title | Visual Information Retrieval Using Java and LIRE PDF eBook |
Author | Lux Mathias |
Publisher | Springer Nature |
Pages | 96 |
Release | 2022-05-31 |
Genre | Mathematics |
ISBN | 3031022823 |
Visual information retrieval (VIR) is an active and vibrant research area, which attempts at providing means for organizing, indexing, annotating, and retrieving visual information (images and videos) from large, unstructured repositories. The goal of VIR is to retrieve matches ranked by their relevance to a given query, which is often expressed as an example image and/or a series of keywords. During its early years (1995-2000), the research efforts were dominated by content-based approaches contributed primarily by the image and video processing community. During the past decade, it was widely recognized that the challenges imposed by the lack of coincidence between an image's visual contents and its semantic interpretation, also known as semantic gap, required a clever use of textual metadata (in addition to information extracted from the image's pixel contents) to make image and video retrieval solutions efficient and effective. The need to bridge (or at least narrow) the semantic gap has been one of the driving forces behind current VIR research. Additionally, other related research problems and market opportunities have started to emerge, offering a broad range of exciting problems for computer scientists and engineers to work on. In this introductory book, we focus on a subset of VIR problems where the media consists of images, and the indexing and retrieval methods are based on the pixel contents of those images -- an approach known as content-based image retrieval (CBIR). We present an implementation-oriented overview of CBIR concepts, techniques, algorithms, and figures of merit. Most chapters are supported by examples written in Java, using Lucene (an open-source Java-based indexing and search implementation) and LIRE (Lucene Image REtrieval), an open-source Java-based library for CBIR. Table of Contents: Introduction / Information Retrieval: Selected Concepts and Techniques / Visual Features / Indexing Visual Features / LIRE: An Extensible Java CBIR Library / Concluding Remarks
Visualization for Information Retrieval
Title | Visualization for Information Retrieval PDF eBook |
Author | Jin Zhang |
Publisher | Springer Science & Business Media |
Pages | 300 |
Release | 2007-11-24 |
Genre | Computers |
ISBN | 3540751483 |
Information visualization offers a way to reveal hidden patterns in a visual presentation and allows users to seek information from a visual perspective. Readers of this book will gain an in-depth understanding of the current state of information retrieval visualization. They will be introduced to existing problems along with technical and theoretical findings. The book also provides practical details for the implementation of an information retrieval visualization system.
Web Semantics for Textual and Visual Information Retrieval
Title | Web Semantics for Textual and Visual Information Retrieval PDF eBook |
Author | Singh, Aarti |
Publisher | IGI Global |
Pages | 311 |
Release | 2017-02-22 |
Genre | Computers |
ISBN | 1522524843 |
Modern society exists in a digital era in which high volumes of multimedia information exists. To optimize the management of this data, new methods are emerging for more efficient information retrieval. Web Semantics for Textual and Visual Information Retrieval is a pivotal reference source for the latest academic research on embedding and associating semantics with multimedia information to improve data retrieval techniques. Highlighting a range of pertinent topics such as automation, knowledge discovery, and social networking, this book is ideally designed for researchers, practitioners, students, and professionals interested in emerging trends in information retrieval.
Textual and Visual Information Retrieval using Query Refinement and Pattern Analysis
Title | Textual and Visual Information Retrieval using Query Refinement and Pattern Analysis PDF eBook |
Author | S.G. Shaila |
Publisher | Springer |
Pages | 141 |
Release | 2018-09-29 |
Genre | Computers |
ISBN | 9811325596 |
This book offers comprehensive coverage of information retrieval by considering both Text Based Information Retrieval (TBIR) and Content Based Image Retrieval (CBIR), together with new research topics. The approach to TBIR is based on creating a thesaurus, as well as event classification and detection. N-gram thesaurus generation for query refinement offers a new method for improving the precision of retrieval, while event classification and detection approaches aid in the classification and organization of information using web documents for domain-specific retrieval applications. In turn, with regard to content based image retrieval (CBIR) the book presents a histogram construction method, which is based on human visual perceptions of color. The book’s overarching goal is to introduce readers to new ideas in an easy-to-follow manner.
Web Usage Mining Techniques and Applications Across Industries
Title | Web Usage Mining Techniques and Applications Across Industries PDF eBook |
Author | Kumar, A.V. Senthil |
Publisher | IGI Global |
Pages | 448 |
Release | 2016-08-12 |
Genre | Computers |
ISBN | 1522506144 |
Web usage mining is defined as the application of data mining technologies to online usage patterns as a way to better understand and serve the needs of web-based applications. Because the internet has become a central component in information sharing and commerce, having the ability to analyze user behavior on the web has become a critical component to a variety of industries. Web Usage Mining Techniques and Applications Across Industries addresses the systems and methodologies that enable organizations to predict web user behavior as a way to support website design and personalization of web-based services and commerce. Featuring perspectives from a variety of sectors, this publication is designed for use by IT specialists, business professionals, researchers, and graduate-level students interested in learning more about the latest concepts related to web-based information retrieval and mining.