Vision: Images, Signals And Neural Networks - Models Of Neural Processing In Visual Perception

Vision: Images, Signals And Neural Networks - Models Of Neural Processing In Visual Perception
Title Vision: Images, Signals And Neural Networks - Models Of Neural Processing In Visual Perception PDF eBook
Author Jeanny Herault
Publisher World Scientific Publishing Company
Pages 308
Release 2010-03-04
Genre Computers
ISBN 9813107545

Download Vision: Images, Signals And Neural Networks - Models Of Neural Processing In Visual Perception Book in PDF, Epub and Kindle

At the fascinating frontiers of neurobiology, mathematics and psychophysics, this book addresses the problem of human and computer vision on the basis of cognitive modeling. After recalling the physics of light and its transformation through media and optics, Hérault presents the principles of the primate's visual system in terms of anatomy and functionality. Then, the neuronal circuitry of the retina is analyzed in terms of spatio-temporal filtering. This basic model is extended to the concept of neuromorphic circuits for motion processing and to the processing of color in the retina. For more in-depth studies, the adaptive non-linear properties of the photoreceptors and of ganglion cells are addressed, exhibiting all the power of the retinal pre-processing of images as a system of information cleaning suitable for further cortical processing. As a target of retinal information, the primary visual area is presented as a bank of filters able to extract valuable descriptors of images, suitable for categorization and recognition and also for local information extraction such as saliency and perspective. All along the book, many comparisons between the models and human perception are discussed as well as detailed applications to computer vision./a

Seeing

Seeing
Title Seeing PDF eBook
Author Karen K. De Valois
Publisher Academic Press
Pages 409
Release 2000-04-28
Genre Psychology
ISBN 0080525245

Download Seeing Book in PDF, Epub and Kindle

One of the most remarkable things about seeing is how effortless this complex task appears to be. This book provides a comprehensive overview of research on the myriad complexities of this task. Coverage includes such classic topics as color, spatial, and binocular vision, areas that have seen a recent explosion of new information such as motion vision, image formation and sampling, and areas where new tools have allowed a better investigation into processes (e.g. neural representation of shape, visual attention).Seeing is a needed reference for researchers specializing in visual perception and is suitable for advance courses on vision.

Biologically Inspired Computer Vision

Biologically Inspired Computer Vision
Title Biologically Inspired Computer Vision PDF eBook
Author Gabriel Cristobal
Publisher John Wiley & Sons
Pages 482
Release 2015-08-20
Genre Technology & Engineering
ISBN 3527680470

Download Biologically Inspired Computer Vision Book in PDF, Epub and Kindle

As the state-of-the-art imaging technologies became more and more advanced, yielding scientific data at unprecedented detail and volume, the need to process and interpret all the data has made image processing and computer vision increasingly important. Sources of data that have to be routinely dealt with today's applications include video transmission, wireless communication, automatic fingerprint processing, massive databanks, non-weary and accurate automatic airport screening, robust night vision, just to name a few. Multidisciplinary inputs from other disciplines such as physics, computational neuroscience, cognitive science, mathematics, and biology will have a fundamental impact in the progress of imaging and vision sciences. One of the advantages of the study of biological organisms is to devise very different type of computational paradigms by implementing a neural network with a high degree of local connectivity. This is a comprehensive and rigorous reference in the area of biologically motivated vision sensors. The study of biologically visual systems can be considered as a two way avenue. On the one hand, biological organisms can provide a source of inspiration for new computational efficient and robust vision models and on the other hand machine vision approaches can provide new insights for understanding biological visual systems. Along the different chapters, this book covers a wide range of topics from fundamental to more specialized topics, including visual analysis based on a computational level, hardware implementation, and the design of new more advanced vision sensors. The last two sections of the book provide an overview of a few representative applications and current state of the art of the research in this area. This makes it a valuable book for graduate, Master, PhD students and also researchers in the field.

Artificial Neural Networks and Machine Learning – ICANN 2018

Artificial Neural Networks and Machine Learning – ICANN 2018
Title Artificial Neural Networks and Machine Learning – ICANN 2018 PDF eBook
Author Věra Kůrková
Publisher Springer
Pages 637
Release 2018-09-25
Genre Computers
ISBN 3030014215

Download Artificial Neural Networks and Machine Learning – ICANN 2018 Book in PDF, Epub and Kindle

This three-volume set LNCS 11139-11141 constitutes the refereed proceedings of the 27th International Conference on Artificial Neural Networks, ICANN 2018, held in Rhodes, Greece, in October 2018. The 139 full and 28 short papers as well as 41 full poster papers and 41 short poster papers presented in these volumes was carefully reviewed and selected from total of 360 submissions. They are related to the following thematic topics: AI and Bioinformatics, Bayesian and Echo State Networks, Brain Inspired Computing, Chaotic Complex Models, Clustering, Mining, Exploratory Analysis, Coding Architectures, Complex Firing Patterns, Convolutional Neural Networks, Deep Learning (DL), DL in Real Time Systems, DL and Big Data Analytics, DL and Big Data, DL and Forensics, DL and Cybersecurity, DL and Social Networks, Evolving Systems – Optimization, Extreme Learning Machines, From Neurons to Neuromorphism, From Sensation to Perception, From Single Neurons to Networks, Fuzzy Modeling, Hierarchical ANN, Inference and Recognition, Information and Optimization, Interacting with The Brain, Machine Learning (ML), ML for Bio Medical systems, ML and Video-Image Processing, ML and Forensics, ML and Cybersecurity, ML and Social Media, ML in Engineering, Movement and Motion Detection, Multilayer Perceptrons and Kernel Networks, Natural Language, Object and Face Recognition, Recurrent Neural Networks and Reservoir Computing, Reinforcement Learning, Reservoir Computing, Self-Organizing Maps, Spiking Dynamics/Spiking ANN, Support Vector Machines, Swarm Intelligence and Decision-Making, Text Mining, Theoretical Neural Computation, Time Series and Forecasting, Training and Learning.

Computation, Learning, and Architectures

Computation, Learning, and Architectures
Title Computation, Learning, and Architectures PDF eBook
Author
Publisher
Pages
Release 1992
Genre
ISBN 9780127412528

Download Computation, Learning, and Architectures Book in PDF, Epub and Kindle

Discovering the Brain

Discovering the Brain
Title Discovering the Brain PDF eBook
Author National Academy of Sciences
Publisher National Academies Press
Pages 195
Release 1992-01-01
Genre Medical
ISBN 0309045290

Download Discovering the Brain Book in PDF, Epub and Kindle

The brain ... There is no other part of the human anatomy that is so intriguing. How does it develop and function and why does it sometimes, tragically, degenerate? The answers are complex. In Discovering the Brain, science writer Sandra Ackerman cuts through the complexity to bring this vital topic to the public. The 1990s were declared the "Decade of the Brain" by former President Bush, and the neuroscience community responded with a host of new investigations and conferences. Discovering the Brain is based on the Institute of Medicine conference, Decade of the Brain: Frontiers in Neuroscience and Brain Research. Discovering the Brain is a "field guide" to the brainâ€"an easy-to-read discussion of the brain's physical structure and where functions such as language and music appreciation lie. Ackerman examines: How electrical and chemical signals are conveyed in the brain. The mechanisms by which we see, hear, think, and pay attentionâ€"and how a "gut feeling" actually originates in the brain. Learning and memory retention, including parallels to computer memory and what they might tell us about our own mental capacity. Development of the brain throughout the life span, with a look at the aging brain. Ackerman provides an enlightening chapter on the connection between the brain's physical condition and various mental disorders and notes what progress can realistically be made toward the prevention and treatment of stroke and other ailments. Finally, she explores the potential for major advances during the "Decade of the Brain," with a look at medical imaging techniquesâ€"what various technologies can and cannot tell usâ€"and how the public and private sectors can contribute to continued advances in neuroscience. This highly readable volume will provide the public and policymakersâ€"and many scientists as wellâ€"with a helpful guide to understanding the many discoveries that are sure to be announced throughout the "Decade of the Brain."

Probabilistic Models of the Brain

Probabilistic Models of the Brain
Title Probabilistic Models of the Brain PDF eBook
Author Rajesh P.N. Rao
Publisher MIT Press
Pages 348
Release 2002-03-29
Genre Medical
ISBN 9780262264327

Download Probabilistic Models of the Brain Book in PDF, Epub and Kindle

A survey of probabilistic approaches to modeling and understanding brain function. Neurophysiological, neuroanatomical, and brain imaging studies have helped to shed light on how the brain transforms raw sensory information into a form that is useful for goal-directed behavior. A fundamental question that is seldom addressed by these studies, however, is why the brain uses the types of representations it does and what evolutionary advantage, if any, these representations confer. It is difficult to address such questions directly via animal experiments. A promising alternative is to use probabilistic principles such as maximum likelihood and Bayesian inference to derive models of brain function. This book surveys some of the current probabilistic approaches to modeling and understanding brain function. Although most of the examples focus on vision, many of the models and techniques are applicable to other modalities as well. The book presents top-down computational models as well as bottom-up neurally motivated models of brain function. The topics covered include Bayesian and information-theoretic models of perception, probabilistic theories of neural coding and spike timing, computational models of lateral and cortico-cortical feedback connections, and the development of receptive field properties from natural signals.