Vibration Control of Vehicle Suspension Systems

Vibration Control of Vehicle Suspension Systems
Title Vibration Control of Vehicle Suspension Systems PDF eBook
Author Haiping Du
Publisher CRC Press
Pages 323
Release 2023-12-18
Genre Technology & Engineering
ISBN 1000999297

Download Vibration Control of Vehicle Suspension Systems Book in PDF, Epub and Kindle

This book covers complex issues for a vehicle suspension model, including non-linearities and uncertainties in a suspension model, network-induced time delays, and sampled-data model from a theoretical point of view. It includes control design methods such as neural network supervisory, sliding mode variable structure, optimal control, internal-model principle, feedback linearization control, input-to-state stabilization, and so on. Every control method is applied to the simulation for comparison and verification. Features: Includes theoretical derivation, proof, and simulation verification combined with suspension models Provides the vibration control strategies for sampled-data suspension models Focuses on the suspensions with time-delays instead of delay-free Covers all the models related to quarter-, half-, and full-vehicle suspensions Details rigorous mathematical derivation process for each theorem supported by MATLAB®-based simulation This book is aimed at researchers and graduate students in automotive engineering, vehicle vibration, mechatronics, control systems, applied mechanics, and vehicle dynamics.

Vibration Control of Vehicle Suspension Systems

Vibration Control of Vehicle Suspension Systems
Title Vibration Control of Vehicle Suspension Systems PDF eBook
Author Haiping Du
Publisher
Pages 0
Release 2024
Genre Motor vehicles
ISBN 9781032208787

Download Vibration Control of Vehicle Suspension Systems Book in PDF, Epub and Kindle

"This book covers complex issues for a vehicle suspension model including non-linearities and uncertainties in a suspension model, network-induced time delays, and sampled-data model from a theoretical point of view. It includes control design methods as neural network supervisory, sliding mode variable structure, and optimal control, internal-model principle, feedback linearization control, input-to-state stabilization, and so forth. Every control method is applied to simulation for comparison and verification. Features: Includes theoretical derivation, proof, and simulation verification combined with suspension models Provides the vibration control strategies for sampled-data suspension models Focuses on the suspensions with time-delays instead of delay-free Covers all the models related to quarter, half, and full-vehicle suspensions Details rigorous mathematical derivation process for each theorem supported by MATLAB® based simulation This book is aimed at researchers and graduate students in automotive engineering, vehicle vibration, mechatronics, control systems, applied mechanics, and vehicle dynamics"--

Vibration control for semi-active vehicle suspension system using CAE tools

Vibration control for semi-active vehicle suspension system using CAE tools
Title Vibration control for semi-active vehicle suspension system using CAE tools PDF eBook
Author Anastasija Serkova
Publisher
Pages
Release 2011
Genre
ISBN

Download Vibration control for semi-active vehicle suspension system using CAE tools Book in PDF, Epub and Kindle

Handbook of Vehicle Suspension Control Systems

Handbook of Vehicle Suspension Control Systems
Title Handbook of Vehicle Suspension Control Systems PDF eBook
Author Honghai Liu
Publisher IET
Pages 423
Release 2013-11-22
Genre Computers
ISBN 1849196338

Download Handbook of Vehicle Suspension Control Systems Book in PDF, Epub and Kindle

Handbook of Vehicle Suspension Control Systems surveys the state-of-art in advanced suspension control theory and applications, with an overview of intelligent vehicle active suspension adaptive control systems, and robust active control of an integrated suspension system, amongst many others.

CONTROL OF VEHICLE SUSPENSION

CONTROL OF VEHICLE SUSPENSION
Title CONTROL OF VEHICLE SUSPENSION PDF eBook
Author Panshuo Li
Publisher Open Dissertation Press
Pages 240
Release 2017-01-26
Genre Technology & Engineering
ISBN 9781361042090

Download CONTROL OF VEHICLE SUSPENSION Book in PDF, Epub and Kindle

This dissertation, "Control of Vehicle Suspension Systems and Its Extension to General Vibration Systems" by Panshuo, Li, 李攀碩, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: This thesis is concerned with the vibration attenuation problem of vehicle suspension systems and its extension to general vibration systems. Two research themes are considered: control methods for vehicle suspension systems and stability, performance analysis, and controller design for periodic piecewise linear systems. For vehicle suspension, control methods are proposed in order to improve ride quality, ensure ride safety and avoid structural damage. First, an adaptive suspension is designed with adjustable inerter, which can adaptively adjust its inertance. An H2 controller aiming at improving the suspension performances is designed to formulate the objective control input. The adjustable inerter adaptively varies its inertance under control to track this objective. Since the inerter cannot exert force to the system, which results in sub-optimal suspension performance, an active suspension with wheelbase preview is designed to enhance the performances. A multi-objective schme aiming at improving ride quality as far as possible subject to acceptable ride safety, avoiding structural damage and actuator saturation, is proposed for a half-car vehicle suspension model. Static output-feedback control is considered from an implementation point of view and an algorithm is presented to obtain the controller gain. Considering that the vehicle velocity may be uncertain or time-varying in practice, a multi-objective velocity-dependent controller is designed as an improved scheme. To treat the velocity as uncertainty or a time-varying parameter, robust controllers developed using homogeneous polynomial parameter-dependent approach and linear parameter-varying approach are proposed. Finally, a more realistic nonlinear full-car system with unknown dynamics characteristics is considered. Based on the successful application on a quarter-car test rig with active disturbance rejection control (ADRC), motion based ADRC is proposed to stabilize the vehicle body of the full-car model. Full-car dynamics are extracted as three interconnected subsystems, considering the heave, pitch, and roll motions. For each subsystem, an extended state observer is established to observe the total disturbance which captures the unknown internal dynamics and external excitation. A PD / Fuzzy-PD controller is constructed for the subsystem after compensating the total disturbance. Four actuator inputs are obtained in real time according to the three motion based controller outputs. For periodic piecewise linear systems, stability, stabilization, performance indices and controller design problems are investigated. First, two sufficient, and one necessary conditions concerning the exponential stability of periodic piecewise linear system with possibly non-Hurwitz subsystems are proposed. To facilitate the performance analysis and controller synthesis, a stability condition is established by employing continuous time-varying Lyapunov function. Based on the stability result, L2-gain and generalized H2 performance criteria are developed as well. By considering a more general formulation of Lyapunov function, that is, discontinuous Lyapunov function with time-varying Lyapunov matrix, stability, stabilization and L2-gain performance are studied by allowing the proposed Lypuanov function to be possibly non-monotonically decreasing over a period. A corresponding algorithm for the stabilizing controller is presented t

Vehicle Suspension Systems and Electromagnetic Dampers

Vehicle Suspension Systems and Electromagnetic Dampers
Title Vehicle Suspension Systems and Electromagnetic Dampers PDF eBook
Author Saad Kashem
Publisher Springer
Pages 218
Release 2017-09-04
Genre Technology & Engineering
ISBN 9811054789

Download Vehicle Suspension Systems and Electromagnetic Dampers Book in PDF, Epub and Kindle

This book describes the development of a new analytical, full-vehicle model with nine degrees of freedom, which uses the new modified skyhook strategy (SKDT) to control the full-vehicle vibration problem. The book addresses the incorporation of road bank angle to create a zero steady-state torque requirement when designing the direct tilt control and the dynamic model of the full car model. It also highlights the potential of the SKDT suspension system to improve cornering performance and paves the way for future work on the vehicle’s integrated chassis control system. Active tilting technology to improve vehicle cornering is the focus of numerous ongoing research projects, but these don’t consider the effect of road bank angle in the control system design or in the dynamic model of the tilting standard passenger vehicles. The non-incorporation of road bank angle creates a non-zero steady state torque requirement.

Advanced Control for Vehicle Active Suspension Systems

Advanced Control for Vehicle Active Suspension Systems
Title Advanced Control for Vehicle Active Suspension Systems PDF eBook
Author Weichao Sun
Publisher Springer
Pages 231
Release 2019-03-13
Genre Technology & Engineering
ISBN 3030157857

Download Advanced Control for Vehicle Active Suspension Systems Book in PDF, Epub and Kindle

This book focuses on most recent theoretical findings on control issues for active suspension systems. The authors first introduce the theoretical background of active suspension control, then present constrained H∞ control approaches of active suspension systems in the entire frequency domain, focusing on the state feedback and dynamic output feedback controller in the finite frequency domain which people are most sensitive to. The book also contains nonlinear constrained tracking control via terminal sliding-mode control and adaptive robust theory, presenting controller design of active suspensions as well as the reliability control of active suspension systems. The target audience primarily comprises research experts in control theory, but the book may also be beneficial for graduate students alike.