Various Arithmetic Functions and their Applications

Various Arithmetic Functions and their Applications
Title Various Arithmetic Functions and their Applications PDF eBook
Author Octavian Cira
Publisher Infinite Study
Pages 402
Release 2016
Genre Arithmetic functions
ISBN 1599733722

Download Various Arithmetic Functions and their Applications Book in PDF, Epub and Kindle

Over 300 sequences and many unsolved problems and conjectures related to them are presented herein. These notions, definitions, unsolved problems, questions, theorems corollaries, formulae, conjectures, examples, mathematical criteria, etc. on integer sequences, numbers, quotients, residues, exponents, sieves, pseudo-primes squares cubes factorials, almost primes, mobile periodicals, functions, tables, prime square factorial bases, generalized factorials, generalized palindromes, so on, have been extracted from the Archives of American Mathematics (University of Texas at Austin) and Arizona State University (Tempe): "The Florentin Smarandache papers" special collections, and Arhivele Statului (Filiala Vâlcea & Filiala Dolj, Romania). This book was born from the collaboration of the two authors, which started in 2013. The first common work was the volume "Solving Diophantine Equations", published in 2014. The contribution of the authors can be summarized as follows: Florentin Smarandache came with his extraordinary ability to propose new areas of study in number theory, and Octavian Cira - with his algorithmic thinking and knowledge of Mathcad.

Arithmetic Functions

Arithmetic Functions
Title Arithmetic Functions PDF eBook
Author József Sándor
Publisher Nova Science Publishers
Pages 253
Release 2021
Genre Mathematics
ISBN 9781536196771

Download Arithmetic Functions Book in PDF, Epub and Kindle

"This monograph is devoted to arithmetic functions, an area of number theory. Arithmetic functions are very important in many parts of theoretical and applied sciences, and many mathematicians have devoted great interest in this field. One of the interesting features of this book is the introduction and study of certain new arithmetic functions that have been considered by the authors separately or together, and their importance is shown in many connections with the classical arithmetic functions or in their applications to other problems"--

Operator Algebras and Their Applications

Operator Algebras and Their Applications
Title Operator Algebras and Their Applications PDF eBook
Author Robert S. Doran
Publisher American Mathematical Soc.
Pages 282
Release 2016-07-28
Genre Mathematics
ISBN 1470419483

Download Operator Algebras and Their Applications Book in PDF, Epub and Kindle

his volume contains the proceedings of the AMS Special Session Operator Algebras and Their Applications: A Tribute to Richard V. Kadison, held from January 10–11, 2015, in San Antonio, Texas. Richard V. Kadison has been a towering figure in the study of operator algebras for more than 65 years. His research and leadership in the field have been fundamental in the development of the subject, and his influence continues to be felt though his work and the work of his many students, collaborators, and mentees. Among the topics addressed in this volume are the Kadison-Kaplanksy conjecture, classification of C∗-algebras, connections between operator spaces and parabolic induction, spectral flow, C∗-algebra actions, von Neumann algebras, and applications to mathematical physics.

Analytic Number Theory for Beginners

Analytic Number Theory for Beginners
Title Analytic Number Theory for Beginners PDF eBook
Author Prapanpong Pongsriiam
Publisher American Mathematical Society
Pages 402
Release 2023-06-02
Genre Mathematics
ISBN 1470464446

Download Analytic Number Theory for Beginners Book in PDF, Epub and Kindle

This new edition of Analytic Number Theory for Beginners presents a friendly introduction to analytic number theory for both advanced undergraduate and beginning graduate students, and offers a comfortable transition between the two levels. The text starts with a review of elementary number theory and continues on to present less commonly covered topics such as multiplicative functions, the floor function, the use of big $O$, little $o$, and Vinogradov notation, as well as summation formulas. Standard advanced topics follow, such as the Dirichlet $L$-function, Dirichlet's Theorem for primes in arithmetic progressions, the Riemann Zeta function, the Prime Number Theorem, and, new in this second edition, sieve methods and additive number theory. The book is self-contained and easy to follow. Each chapter provides examples and exercises of varying difficulty and ends with a section of notes which include a chapter summary, open questions, historical background, and resources for further study. Since many topics in this book are not typically covered at such an accessible level, Analytic Number Theory for Beginners is likely to fill an important niche in today's selection of titles in this field.

Intuitionistic Fuzziness and Other Intelligent Theories and Their Applications

Intuitionistic Fuzziness and Other Intelligent Theories and Their Applications
Title Intuitionistic Fuzziness and Other Intelligent Theories and Their Applications PDF eBook
Author M Hadjiski
Publisher Springer
Pages 199
Release 2018-06-27
Genre Technology & Engineering
ISBN 3319789317

Download Intuitionistic Fuzziness and Other Intelligent Theories and Their Applications Book in PDF, Epub and Kindle

This book gathers extended versions of the best papers presented at the 8th IEEE conference on Intelligent Systems, held in Sofia, Bulgaria on September 4–6, 2016, which are mainly related to theoretical research in the area of intelligent systems. The main focus is on novel developments in fuzzy and intuitionistic fuzzy sets, the mathematical modelling tool of generalized nets and the newly defined method of intercriteria analysis. The papers reflect a broad and diverse team of authors, including many young researchers from Australia, Bulgaria, China, the Czech Republic, Iran, Mexico, Poland, Portugal, Slovakia, South Korea and the UK.

Introduction to Arithmetical Functions

Introduction to Arithmetical Functions
Title Introduction to Arithmetical Functions PDF eBook
Author Paul J. McCarthy
Publisher Springer Science & Business Media
Pages 373
Release 2012-12-06
Genre Mathematics
ISBN 1461386209

Download Introduction to Arithmetical Functions Book in PDF, Epub and Kindle

The theory of arithmetical functions has always been one of the more active parts of the theory of numbers. The large number of papers in the bibliography, most of which were written in the last forty years, attests to its popularity. Most textbooks on the theory of numbers contain some information on arithmetical functions, usually results which are classical. My purpose is to carry the reader beyond the point at which the textbooks abandon the subject. In each chapter there are some results which can be described as contemporary, and in some chapters this is true of almost all the material. This is an introduction to the subject, not a treatise. It should not be expected that it covers every topic in the theory of arithmetical functions. The bibliography is a list of papers related to the topics that are covered, and it is at least a good approximation to a complete list within the limits I have set for myself. In the case of some of the topics omitted from or slighted in the book, I cite expository papers on those topics.

An Introduction to the Theory of Numbers

An Introduction to the Theory of Numbers
Title An Introduction to the Theory of Numbers PDF eBook
Author Leo Moser
Publisher The Trillia Group
Pages 95
Release 2004
Genre Mathematics
ISBN 1931705011

Download An Introduction to the Theory of Numbers Book in PDF, Epub and Kindle

"This book, which presupposes familiarity only with the most elementary concepts of arithmetic (divisibility properties, greatest common divisor, etc.), is an expanded version of a series of lectures for graduate students on elementary number theory. Topics include: Compositions and Partitions; Arithmetic Functions; Distribution of Primes; Irrational Numbers; Congruences; Diophantine Equations; Combinatorial Number Theory; and Geometry of Numbers. Three sections of problems (which include exercises as well as unsolved problems) complete the text."--Publisher's description