Value Distribution Theory
Title | Value Distribution Theory PDF eBook |
Author | Yang Lo |
Publisher | Springer |
Pages | 0 |
Release | 2013-10-03 |
Genre | Mathematics |
ISBN | 9783662029176 |
It is well known that solving certain theoretical or practical problems often depends on exploring the behavior of the roots of an equation such as (1) J(z) = a, where J(z) is an entire or meromorphic function and a is a complex value. It is especially important to investigate the number n(r, J = a) of the roots of (1) and their distribution in a disk Izl ~ r, each root being counted with its multiplicity. It was the research on such topics that raised the curtain on the theory of value distribution of entire or meromorphic functions. In the last century, the famous mathematician E. Picard obtained the pathbreaking result: Any non-constant entire function J(z) must take every finite complex value infinitely many times, with at most one excep tion. Later, E. Borel, by introducing the concept of the order of an entire function, gave the above result a more precise formulation as follows. An entire function J (z) of order A( 0 A
Nevanlinna’s Theory of Value Distribution
Title | Nevanlinna’s Theory of Value Distribution PDF eBook |
Author | William Cherry |
Publisher | Springer Science & Business Media |
Pages | 224 |
Release | 2001-04-24 |
Genre | Mathematics |
ISBN | 9783540664161 |
This monograph serves as a self-contained introduction to Nevanlinna's theory of value distribution as well as a valuable reference for research specialists. Authors present, for the first time in book form, the most modern and refined versions of the Second Main Theorem with precise error terms, in both the geometric and logarithmic derivative based approaches. A unique feature of the monograph is its number theoretic digressions These special sections assume no background in number theory and explore the exciting interconnections between Nevanlinna theory and the theory of Diophantine approximation.
Diophantine Approximations and Value Distribution Theory
Title | Diophantine Approximations and Value Distribution Theory PDF eBook |
Author | Paul Alan Vojta |
Publisher | Springer |
Pages | 141 |
Release | 2006-11-15 |
Genre | Mathematics |
ISBN | 3540474528 |
Extreme Value Distributions
Title | Extreme Value Distributions PDF eBook |
Author | Samuel Kotz |
Publisher | World Scientific |
Pages | 195 |
Release | 2000 |
Genre | Mathematics |
ISBN | 1860944027 |
This important book provides an up-to-date comprehensive and down-to-earth survey of the theory and practice of extreme value distributions OCo one of the most prominent success stories of modern applied probability and statistics. Originated by E J Gumbel in the early forties as a tool for predicting floods, extreme value distributions evolved during the last 50 years into a coherent theory with applications in practically all fields of human endeavor where maximal or minimal values (the so-called extremes) are of relevance. The book is of usefulness both for a beginner with a limited probabilistic background and to expert in the field. Sample Chapter(s). Chapter 1.1: Historical Survey (139 KB). Chapter 1.2: The Three Types of Extreme Value Distributions (146 KB). Chapter 1.3: Limiting Distributions and Domain of Attraction (210 KB). Chapter 1.4: Distribution Function and Moments of Type 1 Distribution (160 KB). Chapter 1.5: Order Statistics, Record Values and Characterizations (175 KB). Contents: Univariate Extreme Value Distributions; Generalized Extreme Value Distributions; Multivariate Extreme Value Distributions. Readership: Applied probabilists, applied statisticians, environmental scientists, climatologists, industrial engineers and management experts."
Value Distribution Theory
Title | Value Distribution Theory PDF eBook |
Author | I. Laine |
Publisher | Springer |
Pages | 256 |
Release | 2006-11-15 |
Genre | Mathematics |
ISBN | 354039480X |
Value Distribution Theory and Related Topics
Title | Value Distribution Theory and Related Topics PDF eBook |
Author | Grigor A. Barsegian |
Publisher | Springer Science & Business Media |
Pages | 331 |
Release | 2006-05-02 |
Genre | Mathematics |
ISBN | 1402079516 |
The Nevanlinna theory of value distribution of meromorphic functions, one of the milestones of complex analysis during the last century, was c- ated to extend the classical results concerning the distribution of of entire functions to the more general setting of meromorphic functions. Later on, a similar reasoning has been applied to algebroid functions, subharmonic functions and meromorphic functions on Riemann surfaces as well as to - alytic functions of several complex variables, holomorphic and meromorphic mappings and to the theory of minimal surfaces. Moreover, several appli- tions of the theory have been exploited, including complex differential and functional equations, complex dynamics and Diophantine equations. The main emphasis of this collection is to direct attention to a number of recently developed novel ideas and generalizations that relate to the - velopment of value distribution theory and its applications. In particular, we mean a recent theory that replaces the conventional consideration of counting within a disc by an analysis of their geometric locations. Another such example is presented by the generalizations of the second main theorem to higher dimensional cases by using the jet theory. Moreover, s- ilar ideas apparently may be applied to several related areas as well, such as to partial differential equations and to differential geometry. Indeed, most of these applications go back to the problem of analyzing zeros of certain complex or real functions, meaning in fact to investigate level sets or level surfaces.
Value Distribution Theory
Title | Value Distribution Theory PDF eBook |
Author | L. Sario |
Publisher | Springer Science & Business Media |
Pages | 247 |
Release | 2013-03-09 |
Genre | Mathematics |
ISBN | 1461581265 |
The purpose of this research monograph is to build up a modern value distribution theory for complex analytic mappings between abstract Riemann surfaces. All results presented herein are new in that, apart from the classical background material in the last chapter, there is no over lapping with any existing monograph on merom orphic functions. Broadly speaking the division of the book is as follows: The Introduction and Chapters I to III deal mainly with the theory of mappings of arbitrary Riemann surfaces as developed by the first named author; Chapter IV, due to Nakai, is devoted to meromorphic functions on parabolic surfaces; Chapter V contains Matsumoto's results on Picard sets; Chapter VI, pre dominantly due to the second named author, presents the so-called nonintegrated forms of the main theorems and includes some joint work by both authors. For a complete list of writers whose results have been discussed we refer to the Author Index.