Validating Clinical Trial Data Reporting with SAS
Title | Validating Clinical Trial Data Reporting with SAS PDF eBook |
Author | Carol I. Matthews |
Publisher | SAS Institute |
Pages | 229 |
Release | 2008 |
Genre | Computers |
ISBN | 1599941287 |
This indispensable guide focuses on validating programs written to support the clinical trial process from after the data collection stage to generating reports and submitting data and output to the Food and Drug Administration.
Validating Clinical Trial Data Reporting with SAS (Hardcover Edition)
Title | Validating Clinical Trial Data Reporting with SAS (Hardcover Edition) PDF eBook |
Author | Carol I. Matthews |
Publisher | |
Pages | 224 |
Release | 2008-03-17 |
Genre | Computers |
ISBN | 9781642956429 |
Validation is a critical component to programming clinical trial analysis. Essential to effective validation is the programmer's understanding of the data with which they'll be working. If you don't understand how the data is arranged, the values that are reasonable for each variable, and the way the data should behave, you cannot ensure that the final result of your programming effort is complete or even appropriate. Therefore, to be a successful programmer in the pharmaceutical industry, you need to understand validation requirements and to learn how to make the code do the bulk of the work so that your programs are efficient as well as accurate. This indispensable guide focuses on validating programs written to support the clinical trial process from after the data collection stage to generating reports and submitting data and output to the Food and Drug Administration (FDA). Authors Carol Matthews and Brian Shilling provide practical examples, explanations for why different techniques are helpful, and tips for avoiding errors in your output. Topics addressed include: Validation and pharmaceutical industry overviews Documentation and maintenance requirements discussions General techniques to facilitate validation Data importing and exporting Common data types Reporting and statistics Validating Clinical Trial Data Reporting with SAS is designed for SAS programmers who are new to the pharmaceutical industry as well as for those seeking a good foundation for validation in the SAS programming arena. Readers should have a working knowledge of Base SAS and a basic understanding of programming tasks in the pharmaceutical industry.
Implementing CDISC Using SAS
Title | Implementing CDISC Using SAS PDF eBook |
Author | Chris Holland |
Publisher | SAS Institute |
Pages | 294 |
Release | 2019-05-30 |
Genre | Computers |
ISBN | 1642952419 |
For decades researchers and programmers have used SAS to analyze, summarize, and report clinical trial data. Now Chris Holland and Jack Shostak have updated their popular Implementing CDISC Using SAS, the first comprehensive book on applying clinical research data and metadata to the Clinical Data Interchange Standards Consortium (CDISC) standards. Implementing CDISC Using SAS: An End-to-End Guide, Revised Second Edition, is an all-inclusive guide on how to implement and analyze the Study Data Tabulation Model (SDTM) and the Analysis Data Model (ADaM) data and prepare clinical trial data for regulatory submission. Updated to reflect the 2017 FDA mandate for adherence to CDISC standards, this new edition covers creating and using metadata, developing conversion specifications, implementing and validating SDTM and ADaM data, determining solutions for legacy data conversions, and preparing data for regulatory submission. The book covers products such as Base SAS, SAS Clinical Data Integration, and the SAS Clinical Standards Toolkit, as well as JMP Clinical. Topics included in this edition include an implementation of the Define-XML 2.0 standard, new SDTM domains, validation with Pinnacle 21 software, event narratives in JMP Clinical, STDM and ADAM metadata spreadsheets, and of course new versions of SAS and JMP software. The second edition was revised to add the latest C-Codes from the most recent release as well as update the make_define macro that accompanies this book in order to add the capability to handle C-Codes. The metadata spreadsheets were updated accordingly. Any manager or user of clinical trial data in this day and age is likely to benefit from knowing how to either put data into a CDISC standard or analyzing and finding data once it is in a CDISC format. If you are one such person--a data manager, clinical and/or statistical programmer, biostatistician, or even a clinician--then this book is for you.
Clinical Trial Data Analysis Using R and SAS
Title | Clinical Trial Data Analysis Using R and SAS PDF eBook |
Author | Ding-Geng (Din) Chen |
Publisher | CRC Press |
Pages | 385 |
Release | 2017-06-01 |
Genre | Mathematics |
ISBN | 1351651145 |
Review of the First Edition "The goal of this book, as stated by the authors, is to fill the knowledge gap that exists between developed statistical methods and the applications of these methods. Overall, this book achieves the goal successfully and does a nice job. I would highly recommend it ...The example-based approach is easy to follow and makes the book a very helpful desktop reference for many biostatistics methods."—Journal of Statistical Software Clinical Trial Data Analysis Using R and SAS, Second Edition provides a thorough presentation of biostatistical analyses of clinical trial data with step-by-step implementations using R and SAS. The book’s practical, detailed approach draws on the authors’ 30 years’ experience in biostatistical research and clinical development. The authors develop step-by-step analysis code using appropriate R packages and functions and SAS PROCS, which enables readers to gain an understanding of the analysis methods and R and SAS implementation so that they can use these two popular software packages to analyze their own clinical trial data. What’s New in the Second Edition Adds SAS programs along with the R programs for clinical trial data analysis. Updates all the statistical analysis with updated R packages. Includes correlated data analysis with multivariate analysis of variance. Applies R and SAS to clinical trial data from hypertension, duodenal ulcer, beta blockers, familial andenomatous polyposis, and breast cancer trials. Covers the biostatistical aspects of various clinical trials, including treatment comparisons, time-to-event endpoints, longitudinal clinical trials, and bioequivalence trials.
Clinical Trials
Title | Clinical Trials PDF eBook |
Author | Duolao Wang |
Publisher | Remedica |
Pages | 497 |
Release | 2006 |
Genre | Medical |
ISBN | 1901346722 |
This book explains statistics specifically for a medically literate audience. Readers gain not only an understanding of the basics of medical statistics, but also a critical insight into how to review and evaluate clinical trial evidence.
Common Statistical Methods for Clinical Research with SAS Examples, Third Edition
Title | Common Statistical Methods for Clinical Research with SAS Examples, Third Edition PDF eBook |
Author | Glenn Walker |
Publisher | SAS Institute |
Pages | 553 |
Release | 2010-02-15 |
Genre | Mathematics |
ISBN | 1607644258 |
Glenn Walker and Jack Shostak's Common Statistical Methods for Clinical Research with SAS Examples, Third Edition, is a thoroughly updated edition of the popular introductory statistics book for clinical researchers. This new edition has been extensively updated to include the use of ODS graphics in numerous examples as well as a new emphasis on PROC MIXED. Straightforward and easy to use as either a text or a reference, the book is full of practical examples from clinical research to illustrate both statistical and SAS methodology. Each example is worked out completely, step by step, from the raw data. Common Statistical Methods for Clinical Research with SAS Examples, Third Edition, is an applications book with minimal theory. Each section begins with an overview helpful to nonstatisticians and then drills down into details that will be valuable to statistical analysts and programmers. Further details, as well as bonus information and a guide to further reading, are presented in the extensive appendices. This text is a one-source guide for statisticians that documents the use of the tests used most often in clinical research, with assumptions, details, and some tricks--all in one place. This book is part of the SAS Press program.
Clinical Data Quality Checks for CDISC Compliance Using SAS
Title | Clinical Data Quality Checks for CDISC Compliance Using SAS PDF eBook |
Author | Sunil Gupta |
Publisher | CRC Press |
Pages | 165 |
Release | 2019-09-23 |
Genre | Mathematics |
ISBN | 1000698327 |
Clinical Data Quality Checks for CDISC Compliance using SAS is the first book focused on identifying and correcting data quality and CDISC compliance issues with real-world innovative SAS programming techniques such as Proc SQL, metadata and macro programming. Learn to master Proc SQL’s subqueries and summary functions for multi-tasking process. Drawing on his more than 25 years’ experience in the pharmaceutical industry, the author provides a unique approach that empowers SAS programmers to take control of data quality and CDISC compliance. This book helps you create a system of SDTM and ADaM checks that can be tracked for continuous improvement. How often have you encountered issues such as missing required variables, duplicate records, invalid derived variables and invalid sequence of two dates? With the SAS programming techniques introduced in this book, you can start to monitor these and more complex data and CDISC compliance issues. With increased standardization in SDTM and ADaM specifications and data values, codelist dictionaries can be created for better organization, planning and maintenance. This book includes a SAS program to create excel files containing unique values from all SDTM and ADaM variables as columns. In addition, another SAS program compares SDTM and ADaM codelist dictionaries with codelists from define.xml specifications. Having tools to automate this process greatly saves time from doing it manually. Features SDTMs and ADaMs Vitals SDTMs and ADaMs Data CDISC Specifications Compliance CDISC Data Compliance Protocol Compliance Codelist Dictionary Compliance