Use of a Pitch Adjustable Foot Restraint System: Operator Strength Capability and Load Requirements
Title | Use of a Pitch Adjustable Foot Restraint System: Operator Strength Capability and Load Requirements PDF eBook |
Author | Robert P. Wilmington |
Publisher | |
Pages | 40 |
Release | 1994 |
Genre | Human engineering |
ISBN |
Monthly Catalog of United States Government Publications
Title | Monthly Catalog of United States Government Publications PDF eBook |
Author | |
Publisher | |
Pages | 1450 |
Release | |
Genre | Government publications |
ISBN |
Scientific and Technical Aerospace Reports
Title | Scientific and Technical Aerospace Reports PDF eBook |
Author | |
Publisher | |
Pages | 652 |
Release | 1994 |
Genre | Aeronautics |
ISBN |
Monthly Catalogue, United States Public Documents
Title | Monthly Catalogue, United States Public Documents PDF eBook |
Author | |
Publisher | |
Pages | 1994 |
Release | 1995 |
Genre | Government publications |
ISBN |
Use of a Pitch Adjustable Foot Restraint System
Title | Use of a Pitch Adjustable Foot Restraint System PDF eBook |
Author | National Aeronautics and Space Administration (NASA) |
Publisher | Createspace Independent Publishing Platform |
Pages | 38 |
Release | 2018-07-15 |
Genre | |
ISBN | 9781722925468 |
The zero-gravity environment creates a need for a proper human body restraint system to maintain a comfortable posture with less fatigue and to maximize productivity. In addition, restraint systems must be able to meet the loading demands of maintenance and assembly tasks performed on orbit. The shuttle's primary intravehicular astronaut restraint system is currently a foot loop design that attaches to flat surfaces on the shuttle, allowing for varying mounting locations and easy egress and ingress. However, this design does not allow for elevation, pitch, or foot loop length adjustment. Several prototype foot restraint systems are being evaluated for use aboard the space station and the space shuttle. The JSC Anthropometry and Biomechanics Laboratory initiated this study to quantify the maximum axial forces and moments that would be induced on a foot loop type of restraint while operators performed a torque wrench task, also allowing for angling the restraint pitch angle to study yet another effect. Results indicate that the greatest forces into the torque wrench and into the foot restraint system occur while the operator performs an upward effort. This study did not see any significant difference in the operators' force due to pitch orientation. Thus, in a work environment in which hand holds are available, no significant influence of the pitch angle on forces imparted to the restraint system existed. Wilmington, Robert P. and Poliner, Jeffrey and Klute, Glenn K. Johnson Space Center NAS9-18800...
Comparison of Extravehicular Mobility Unit (EMU) Suited and Unsuited Isolated Joint Strength Measurements
Title | Comparison of Extravehicular Mobility Unit (EMU) Suited and Unsuited Isolated Joint Strength Measurements PDF eBook |
Author | |
Publisher | |
Pages | 62 |
Release | 1996 |
Genre | |
ISBN |
The Aeronautical Journal
Title | The Aeronautical Journal PDF eBook |
Author | |
Publisher | |
Pages | 522 |
Release | 1995 |
Genre | Aeronautics |
ISBN |