Unsupervised Signal Processing
Title | Unsupervised Signal Processing PDF eBook |
Author | João Marcos Travassos Romano |
Publisher | CRC Press |
Pages | 332 |
Release | 2018-09-03 |
Genre | Computers |
ISBN | 1420019465 |
Unsupervised Signal Processing: Channel Equalization and Source Separation provides a unified, systematic, and synthetic presentation of the theory of unsupervised signal processing. Always maintaining the focus on a signal processing-oriented approach, this book describes how the subject has evolved and assumed a wider scope that covers several topics, from well-established blind equalization and source separation methods to novel approaches based on machine learning and bio-inspired algorithms. From the foundations of statistical and adaptive signal processing, the authors explore and elaborate on emerging tools, such as machine learning-based solutions and bio-inspired methods. With a fresh take on this exciting area of study, this book: Provides a solid background on the statistical characterization of signals and systems and on linear filtering theory Emphasizes the link between supervised and unsupervised processing from the perspective of linear prediction and constrained filtering theory Addresses key issues concerning equilibrium solutions and equivalence relationships in the context of unsupervised equalization criteria Provides a systematic presentation of source separation and independent component analysis Discusses some instigating connections between the filtering problem and computational intelligence approaches. Building on more than a decade of the authors’ work at DSPCom laboratory, this book applies a fresh conceptual treatment and mathematical formalism to important existing topics. The result is perhaps the first unified presentation of unsupervised signal processing techniques—one that addresses areas including digital filters, adaptive methods, and statistical signal processing. With its remarkable synthesis of the field, this book provides a new vision to stimulate progress and contribute to the advent of more useful, efficient, and friendly intelligent systems.
Machine Learning in Signal Processing
Title | Machine Learning in Signal Processing PDF eBook |
Author | Sudeep Tanwar |
Publisher | CRC Press |
Pages | 488 |
Release | 2021-12-10 |
Genre | Technology & Engineering |
ISBN | 1000487814 |
Machine Learning in Signal Processing: Applications, Challenges, and the Road Ahead offers a comprehensive approach toward research orientation for familiarizing signal processing (SP) concepts to machine learning (ML). ML, as the driving force of the wave of artificial intelligence (AI), provides powerful solutions to many real-world technical and scientific challenges. This book will present the most recent and exciting advances in signal processing for ML. The focus is on understanding the contributions of signal processing and ML, and its aim to solve some of the biggest challenges in AI and ML. FEATURES Focuses on addressing the missing connection between signal processing and ML Provides a one-stop guide reference for readers Oriented toward material and flow with regards to general introduction and technical aspects Comprehensively elaborates on the material with examples and diagrams This book is a complete resource designed exclusively for advanced undergraduate students, post-graduate students, research scholars, faculties, and academicians of computer science and engineering, computer science and applications, and electronics and telecommunication engineering.
Academic Press Library in Signal Processing
Title | Academic Press Library in Signal Processing PDF eBook |
Author | Paulo S.R. Diniz |
Publisher | Academic Press |
Pages | 1559 |
Release | 2013-09-21 |
Genre | Technology & Engineering |
ISBN | 0123972264 |
This first volume, edited and authored by world leading experts, gives a review of the principles, methods and techniques of important and emerging research topics and technologies in machine learning and advanced signal processing theory. With this reference source you will: - Quickly grasp a new area of research - Understand the underlying principles of a topic and its application - Ascertain how a topic relates to other areas and learn of the research issues yet to be resolved - Quick tutorial reviews of important and emerging topics of research in machine learning - Presents core principles in signal processing theory and shows their applications - Reference content on core principles, technologies, algorithms and applications - Comprehensive references to journal articles and other literature on which to build further, more specific and detailed knowledge - Edited by leading people in the field who, through their reputation, have been able to commission experts to write on a particular topic
Digital Signal Processing and Statistical Classification
Title | Digital Signal Processing and Statistical Classification PDF eBook |
Author | George J. Miao |
Publisher | Artech House |
Pages | 522 |
Release | 2002 |
Genre | Mathematics |
ISBN | 9781580531351 |
This is the first book to introduce and integrate advanced digital signal processing (DSP) and classification together, and the only volume to introduce state-of-the-art transforms including DFT, FFT, DCT, DHT, PCT, CDT, and ODT together for DSP and communication applications. You get step-by-step guidance in discrete-time domain signal processing and frequency domain signal analysis; digital filter design and adaptive filtering; multirate digital processing; and statistical signal classification. It also helps you overcome problems associated with multirate A/D and D/A converters.
Deep Learning
Title | Deep Learning PDF eBook |
Author | Li Deng |
Publisher | |
Pages | 212 |
Release | 2014 |
Genre | Machine learning |
ISBN | 9781601988140 |
Provides an overview of general deep learning methodology and its applications to a variety of signal and information processing tasks
Geometry of Deep Learning
Title | Geometry of Deep Learning PDF eBook |
Author | Jong Chul Ye |
Publisher | Springer Nature |
Pages | 338 |
Release | 2022-01-05 |
Genre | Mathematics |
ISBN | 9811660468 |
The focus of this book is on providing students with insights into geometry that can help them understand deep learning from a unified perspective. Rather than describing deep learning as an implementation technique, as is usually the case in many existing deep learning books, here, deep learning is explained as an ultimate form of signal processing techniques that can be imagined. To support this claim, an overview of classical kernel machine learning approaches is presented, and their advantages and limitations are explained. Following a detailed explanation of the basic building blocks of deep neural networks from a biological and algorithmic point of view, the latest tools such as attention, normalization, Transformer, BERT, GPT-3, and others are described. Here, too, the focus is on the fact that in these heuristic approaches, there is an important, beautiful geometric structure behind the intuition that enables a systematic understanding. A unified geometric analysis to understand the working mechanism of deep learning from high-dimensional geometry is offered. Then, different forms of generative models like GAN, VAE, normalizing flows, optimal transport, and so on are described from a unified geometric perspective, showing that they actually come from statistical distance-minimization problems. Because this book contains up-to-date information from both a practical and theoretical point of view, it can be used as an advanced deep learning textbook in universities or as a reference source for researchers interested in acquiring the latest deep learning algorithms and their underlying principles. In addition, the book has been prepared for a codeshare course for both engineering and mathematics students, thus much of the content is interdisciplinary and will appeal to students from both disciplines.
Digital Signal Processing in Audio and Acoustical Engineering
Title | Digital Signal Processing in Audio and Acoustical Engineering PDF eBook |
Author | Francis F. Li |
Publisher | CRC Press |
Pages | 228 |
Release | 2019-04-02 |
Genre | Technology & Engineering |
ISBN | 146659389X |
Starting with essential maths, fundamentals of signals and systems, and classical concepts of DSP, this book presents, from an application-oriented perspective, modern concepts and methods of DSP including machine learning for audio acoustics and engineering. Content highlights include but are not limited to room acoustic parameter measurements, filter design, codecs, machine learning for audio pattern recognition and machine audition, spatial audio, array technologies and hearing aids. Some research outcomes are fed into book as worked examples. As a research informed text, the book attempts to present DSP and machine learning from a new and more relevant angle to acousticians and audio engineers. Some MATLAB® codes or frameworks of algorithms are given as downloads available on the CRC Press website. Suggested exploration and mini project ideas are given for "proof of concept" type of exercises and directions for further study and investigation. The book is intended for researchers, professionals, and senior year students in the field of audio acoustics.