Understanding Big Data Scalability

Understanding Big Data Scalability
Title Understanding Big Data Scalability PDF eBook
Author Cory Isaacson
Publisher Pearson Education
Pages 123
Release 2014
Genre Big data
ISBN 0133598705

Download Understanding Big Data Scalability Book in PDF, Epub and Kindle

Big Data

Big Data
Title Big Data PDF eBook
Author James Warren
Publisher Simon and Schuster
Pages 481
Release 2015-04-29
Genre Computers
ISBN 1638351104

Download Big Data Book in PDF, Epub and Kindle

Summary Big Data teaches you to build big data systems using an architecture that takes advantage of clustered hardware along with new tools designed specifically to capture and analyze web-scale data. It describes a scalable, easy-to-understand approach to big data systems that can be built and run by a small team. Following a realistic example, this book guides readers through the theory of big data systems, how to implement them in practice, and how to deploy and operate them once they're built. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Book Web-scale applications like social networks, real-time analytics, or e-commerce sites deal with a lot of data, whose volume and velocity exceed the limits of traditional database systems. These applications require architectures built around clusters of machines to store and process data of any size, or speed. Fortunately, scale and simplicity are not mutually exclusive. Big Data teaches you to build big data systems using an architecture designed specifically to capture and analyze web-scale data. This book presents the Lambda Architecture, a scalable, easy-to-understand approach that can be built and run by a small team. You'll explore the theory of big data systems and how to implement them in practice. In addition to discovering a general framework for processing big data, you'll learn specific technologies like Hadoop, Storm, and NoSQL databases. This book requires no previous exposure to large-scale data analysis or NoSQL tools. Familiarity with traditional databases is helpful. What's Inside Introduction to big data systems Real-time processing of web-scale data Tools like Hadoop, Cassandra, and Storm Extensions to traditional database skills About the Authors Nathan Marz is the creator of Apache Storm and the originator of the Lambda Architecture for big data systems. James Warren is an analytics architect with a background in machine learning and scientific computing. Table of Contents A new paradigm for Big Data PART 1 BATCH LAYER Data model for Big Data Data model for Big Data: Illustration Data storage on the batch layer Data storage on the batch layer: Illustration Batch layer Batch layer: Illustration An example batch layer: Architecture and algorithms An example batch layer: Implementation PART 2 SERVING LAYER Serving layer Serving layer: Illustration PART 3 SPEED LAYER Realtime views Realtime views: Illustration Queuing and stream processing Queuing and stream processing: Illustration Micro-batch stream processing Micro-batch stream processing: Illustration Lambda Architecture in depth

Scalable Big Data Architecture

Scalable Big Data Architecture
Title Scalable Big Data Architecture PDF eBook
Author Bahaaldine Azarmi
Publisher Apress
Pages 147
Release 2015-12-31
Genre Computers
ISBN 1484213262

Download Scalable Big Data Architecture Book in PDF, Epub and Kindle

This book highlights the different types of data architecture and illustrates the many possibilities hidden behind the term "Big Data", from the usage of No-SQL databases to the deployment of stream analytics architecture, machine learning, and governance. Scalable Big Data Architecture covers real-world, concrete industry use cases that leverage complex distributed applications , which involve web applications, RESTful API, and high throughput of large amount of data stored in highly scalable No-SQL data stores such as Couchbase and Elasticsearch. This book demonstrates how data processing can be done at scale from the usage of NoSQL datastores to the combination of Big Data distribution. When the data processing is too complex and involves different processing topology like long running jobs, stream processing, multiple data sources correlation, and machine learning, it’s often necessary to delegate the load to Hadoop or Spark and use the No-SQL to serve processed data in real time. This book shows you how to choose a relevant combination of big data technologies available within the Hadoop ecosystem. It focuses on processing long jobs, architecture, stream data patterns, log analysis, and real time analytics. Every pattern is illustrated with practical examples, which use the different open sourceprojects such as Logstash, Spark, Kafka, and so on. Traditional data infrastructures are built for digesting and rendering data synthesis and analytics from large amount of data. This book helps you to understand why you should consider using machine learning algorithms early on in the project, before being overwhelmed by constraints imposed by dealing with the high throughput of Big data. Scalable Big Data Architecture is for developers, data architects, and data scientists looking for a better understanding of how to choose the most relevant pattern for a Big Data project and which tools to integrate into that pattern.

Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data

Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data
Title Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data PDF eBook
Author Paul Zikopoulos
Publisher McGraw Hill Professional
Pages 176
Release 2011-10-22
Genre Computers
ISBN 0071790543

Download Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data Book in PDF, Epub and Kindle

Big Data represents a new era in data exploration and utilization, and IBM is uniquely positioned to help clients navigate this transformation. This book reveals how IBM is leveraging open source Big Data technology, infused with IBM technologies, to deliver a robust, secure, highly available, enterprise-class Big Data platform. The three defining characteristics of Big Data--volume, variety, and velocity--are discussed. You'll get a primer on Hadoop and how IBM is hardening it for the enterprise, and learn when to leverage IBM InfoSphere BigInsights (Big Data at rest) and IBM InfoSphere Streams (Big Data in motion) technologies. Industry use cases are also included in this practical guide. Learn how IBM hardens Hadoop for enterprise-class scalability and reliability Gain insight into IBM's unique in-motion and at-rest Big Data analytics platform Learn tips and tricks for Big Data use cases and solutions Get a quick Hadoop primer

Understanding Big Data

Understanding Big Data
Title Understanding Big Data PDF eBook
Author Prof. (Dr.) R. K. Pandey
Publisher Rudra Publications
Pages 232
Release
Genre Education
ISBN 8196047258

Download Understanding Big Data Book in PDF, Epub and Kindle

The book titled 'Understanding Big Data' covers complete syllabus of Big Data prescribed by Technical University of Uttar Pradesh and other Universities also. The Book contains better understanding of Big Data concept. This Book will also guide on the job reference for IT practitioners in mobile computing environments.

Big Data For Dummies

Big Data For Dummies
Title Big Data For Dummies PDF eBook
Author Judith S. Hurwitz
Publisher John Wiley & Sons
Pages 336
Release 2013-04-02
Genre Computers
ISBN 1118644174

Download Big Data For Dummies Book in PDF, Epub and Kindle

Find the right big data solution for your business or organization Big data management is one of the major challenges facing business, industry, and not-for-profit organizations. Data sets such as customer transactions for a mega-retailer, weather patterns monitored by meteorologists, or social network activity can quickly outpace the capacity of traditional data management tools. If you need to develop or manage big data solutions, you'll appreciate how these four experts define, explain, and guide you through this new and often confusing concept. You'll learn what it is, why it matters, and how to choose and implement solutions that work. Effectively managing big data is an issue of growing importance to businesses, not-for-profit organizations, government, and IT professionals Authors are experts in information management, big data, and a variety of solutions Explains big data in detail and discusses how to select and implement a solution, security concerns to consider, data storage and presentation issues, analytics, and much more Provides essential information in a no-nonsense, easy-to-understand style that is empowering Big Data For Dummies cuts through the confusion and helps you take charge of big data solutions for your organization.

Scaling Big Data with Hadoop and Solr - Second Edition

Scaling Big Data with Hadoop and Solr - Second Edition
Title Scaling Big Data with Hadoop and Solr - Second Edition PDF eBook
Author Hrishikesh Vijay Karambelkar
Publisher Packt Publishing Ltd
Pages 166
Release 2015-04-27
Genre Computers
ISBN 1783553405

Download Scaling Big Data with Hadoop and Solr - Second Edition Book in PDF, Epub and Kindle

This book is aimed at developers, designers, and architects who would like to build big data enterprise search solutions for their customers or organizations. No prior knowledge of Apache Hadoop and Apache Solr/Lucene technologies is required.