Uncertainty in Geometric Computations

Uncertainty in Geometric Computations
Title Uncertainty in Geometric Computations PDF eBook
Author Joab Winkler
Publisher Springer Science & Business Media
Pages 220
Release 2012-12-06
Genre Mathematics
ISBN 1461508134

Download Uncertainty in Geometric Computations Book in PDF, Epub and Kindle

This book contains the proceedings of the workshop Uncertainty in Geomet ric Computations that was held in Sheffield, England, July 5-6, 2001. A total of 59 delegates from 5 countries in Europe, North America and Asia attended the workshop. The workshop provided a forum for the discussion of com putational methods for quantifying, representing and assessing the effects of uncertainty in geometric computations. It was organised around lectures by invited speakers, and presentations in poster form from participants. Computer simulations and modelling are used frequently in science and engi neering, in applications ranging from the understanding of natural and artificial phenomena, to the design, test and manufacturing stages of production. This widespread use necessarily implies that detailed knowledge of the limitations of computer simulations is required. In particular, the usefulness of a computer simulation is directly dependent on the user's knowledge of the uncertainty in the simulation. Although an understanding of the phenomena being modelled is an important requirement of a good computer simulation, the model will be plagued by deficiencies if the errors and uncertainties in it are not consid ered when the results are analysed. The applications of computer modelling are large and diverse, but the workshop focussed on the management of un certainty in three areas : Geometric modelling, computer vision, and computer graphics.

Computational Geometry With Independent And Dependent Uncertainties

Computational Geometry With Independent And Dependent Uncertainties
Title Computational Geometry With Independent And Dependent Uncertainties PDF eBook
Author Rivka Gitik
Publisher World Scientific
Pages 160
Release 2022-08-11
Genre Computers
ISBN 9811253854

Download Computational Geometry With Independent And Dependent Uncertainties Book in PDF, Epub and Kindle

This comprehensive compendium describes a parametric model and algorithmic theory to represent geometric entities with dependent uncertainties between them. The theory, named Linear Parametric Geometric Uncertainty Model (LPGUM), is an expressive and computationally efficient framework that allows to systematically study geometric uncertainty and its related algorithms in computer geometry.The self-contained monograph is of great scientific, technical, and economic importance as geometric uncertainty is ubiquitous in mechanical CAD/CAM, robotics, computer vision, wireless networks and many other fields. Geometric models, in contrast, are usually exact and do not account for these inaccuracies.This useful reference text benefits academics, researchers, and practitioners in computer science, robotics, mechanical engineering and related fields.

The Geometry of Uncertainty

The Geometry of Uncertainty
Title The Geometry of Uncertainty PDF eBook
Author Fabio Cuzzolin
Publisher Springer Nature
Pages 850
Release 2020-12-17
Genre Computers
ISBN 3030631532

Download The Geometry of Uncertainty Book in PDF, Epub and Kindle

The principal aim of this book is to introduce to the widest possible audience an original view of belief calculus and uncertainty theory. In this geometric approach to uncertainty, uncertainty measures can be seen as points of a suitably complex geometric space, and manipulated in that space, for example, combined or conditioned. In the chapters in Part I, Theories of Uncertainty, the author offers an extensive recapitulation of the state of the art in the mathematics of uncertainty. This part of the book contains the most comprehensive summary to date of the whole of belief theory, with Chap. 4 outlining for the first time, and in a logical order, all the steps of the reasoning chain associated with modelling uncertainty using belief functions, in an attempt to provide a self-contained manual for the working scientist. In addition, the book proposes in Chap. 5 what is possibly the most detailed compendium available of all theories of uncertainty. Part II, The Geometry of Uncertainty, is the core of this book, as it introduces the author’s own geometric approach to uncertainty theory, starting with the geometry of belief functions: Chap. 7 studies the geometry of the space of belief functions, or belief space, both in terms of a simplex and in terms of its recursive bundle structure; Chap. 8 extends the analysis to Dempster’s rule of combination, introducing the notion of a conditional subspace and outlining a simple geometric construction for Dempster’s sum; Chap. 9 delves into the combinatorial properties of plausibility and commonality functions, as equivalent representations of the evidence carried by a belief function; then Chap. 10 starts extending the applicability of the geometric approach to other uncertainty measures, focusing in particular on possibility measures (consonant belief functions) and the related notion of a consistent belief function. The chapters in Part III, Geometric Interplays, are concerned with the interplay of uncertainty measures of different kinds, and the geometry of their relationship, with a particular focus on the approximation problem. Part IV, Geometric Reasoning, examines the application of the geometric approach to the various elements of the reasoning chain illustrated in Chap. 4, in particular conditioning and decision making. Part V concludes the book by outlining a future, complete statistical theory of random sets, future extensions of the geometric approach, and identifying high-impact applications to climate change, machine learning and artificial intelligence. The book is suitable for researchers in artificial intelligence, statistics, and applied science engaged with theories of uncertainty. The book is supported with the most comprehensive bibliography on belief and uncertainty theory.

Handbook of Geometric Computing

Handbook of Geometric Computing
Title Handbook of Geometric Computing PDF eBook
Author Eduardo Bayro Corrochano
Publisher Springer Science & Business Media
Pages 773
Release 2005-12-06
Genre Computers
ISBN 3540282475

Download Handbook of Geometric Computing Book in PDF, Epub and Kindle

Many computer scientists, engineers, applied mathematicians, and physicists use geometry theory and geometric computing methods in the design of perception-action systems, intelligent autonomous systems, and man-machine interfaces. This handbook brings together the most recent advances in the application of geometric computing for building such systems, with contributions from leading experts in the important fields of neuroscience, neural networks, image processing, pattern recognition, computer vision, uncertainty in geometric computations, conformal computational geometry, computer graphics and visualization, medical imagery, geometry and robotics, and reaching and motion planning. For the first time, the various methods are presented in a comprehensive, unified manner. This handbook is highly recommended for postgraduate students and researchers working on applications such as automated learning; geometric and fuzzy reasoning; human-like artificial vision; tele-operation; space maneuvering; haptics; rescue robots; man-machine interfaces; tele-immersion; computer- and robotics-aided neurosurgery or orthopedics; the assembly and design of humanoids; and systems for metalevel reasoning.

Maintaining Topology in Geometric Descriptions with Numerical Uncertainty

Maintaining Topology in Geometric Descriptions with Numerical Uncertainty
Title Maintaining Topology in Geometric Descriptions with Numerical Uncertainty PDF eBook
Author Mark G. Segal
Publisher
Pages 33
Release 1988
Genre Computer graphics
ISBN

Download Maintaining Topology in Geometric Descriptions with Numerical Uncertainty Book in PDF, Epub and Kindle

Algorithms for computer graphics or computational geometry often infer the topological structure of geometrical objects from numerical data. Unavoidable errors (due to limited precision) affect these calculations so that their use may produce ambiguous or contradictory inferences.

Uncertain Computation-based Decision Theory

Uncertain Computation-based Decision Theory
Title Uncertain Computation-based Decision Theory PDF eBook
Author Rafik Aziz Aliev
Publisher World Scientific
Pages 538
Release 2017-12-06
Genre Computers
ISBN 9813228954

Download Uncertain Computation-based Decision Theory Book in PDF, Epub and Kindle

Uncertain computation is a system of computation and reasoning in which the objects of computation are not values of variables but restrictions on values of variables.This compendium includes uncertain computation examples based on interval arithmetic, probabilistic arithmetic, fuzzy arithmetic, Z-number arithmetic, and arithmetic with geometric primitives.The principal problem with the existing decision theories is that they do not have capabilities to deal with such environment. Up to now, no books where decision theories based on all generalizations level of information are considered. Thus, this self-containing volume intends to overcome this gap between real-world settings' decisions and their formal analysis.

Uncertainty Quantification in Computational Fluid Dynamics and Aircraft Engines

Uncertainty Quantification in Computational Fluid Dynamics and Aircraft Engines
Title Uncertainty Quantification in Computational Fluid Dynamics and Aircraft Engines PDF eBook
Author Francesco Montomoli
Publisher Springer
Pages 204
Release 2018-06-21
Genre Technology & Engineering
ISBN 3319929437

Download Uncertainty Quantification in Computational Fluid Dynamics and Aircraft Engines Book in PDF, Epub and Kindle

This book introduces design techniques developed to increase the safety of aircraft engines, and demonstrates how the application of stochastic methods can overcome problems in the accurate prediction of engine lift caused by manufacturing error. This in turn addresses the issue of achieving required safety margins when hampered by limits in current design and manufacturing methods. The authors show that avoiding the potential catastrophe generated by the failure of an aircraft engine relies on the prediction of the correct behaviour of microscopic imperfections. This book shows how to quantify the possibility of such failure, and that it is possible to design components that are inherently less risky and more reliable. This new, updated and significantly expanded edition gives an introduction to engine reliability and safety to contextualise this important issue, evaluates newly-proposed methods for uncertainty quantification as applied to jet engines. Uncertainty Quantification in Computational Fluid Dynamics and Aircraft Engines will be of use to gas turbine manufacturers and designers as well as CFD practitioners, specialists and researchers. Graduate and final year undergraduate students in aerospace or mathematical engineering may also find it of interest.