Ultrafast Chemical Exchange and Spectral Diffusion of Solute-solvent Complexes Probed by 2D IR Spectroscopy

Ultrafast Chemical Exchange and Spectral Diffusion of Solute-solvent Complexes Probed by 2D IR Spectroscopy
Title Ultrafast Chemical Exchange and Spectral Diffusion of Solute-solvent Complexes Probed by 2D IR Spectroscopy PDF eBook
Author Kyungwon Kwak
Publisher
Pages 274
Release 2008
Genre
ISBN

Download Ultrafast Chemical Exchange and Spectral Diffusion of Solute-solvent Complexes Probed by 2D IR Spectroscopy Book in PDF, Epub and Kindle

Ultrafast Time-resolved Infrared Spectroscopy of Molecular Monolayers and Solute-solvent Complexes

Ultrafast Time-resolved Infrared Spectroscopy of Molecular Monolayers and Solute-solvent Complexes
Title Ultrafast Time-resolved Infrared Spectroscopy of Molecular Monolayers and Solute-solvent Complexes PDF eBook
Author Daniel Edward Rosenfeld
Publisher
Pages
Release 2012
Genre
ISBN

Download Ultrafast Time-resolved Infrared Spectroscopy of Molecular Monolayers and Solute-solvent Complexes Book in PDF, Epub and Kindle

Ultrafast time-resolved infrared spectroscopy has been a powerful tool in resolving and studying ultrafast motions in bulk chemical and biological systems. The utility of ultrafast time-resolved infrared spectroscopy is illustrated through two studies of solute-solvent complexes. The same experimental methods used to study bulk systems are then extended to study surface systems through the development of both surface molecular probes and new spectroscopic techniques. Ultrafast polarization and wavelength selective IR pump-probe spectroscopy is used to measure the inertial and long time orientational dynamics of pi-hydrogen bonding complexes. The complexes studied are composed of phen-d-ol (phenol-OD) and various pi-base solvents with different electron donating or withdrawing substituents. The inertial motion is found to be insensitive to the strength of the hydrogen bond, but highly sensitive to the local solvent structure as reported on by inhomogeneous line broadening. The local solvent structure therefore acts as the controlling influence in determining the extent of inertial orientational relaxation, and thus the angular potential. Variation in the pi-hydrogen bond strength is of secondary importance. Hydrogen bonded complexes between phenol and phenylacetylene are studied using ultrafast two-dimensional infrared (2D IR) chemical exchange spectroscopy. Phenylacetylene has two possible pi-hydrogen bonding acceptor sites (phenyl or acetylene) that compete for hydrogen bond donors in solution at room temperature. The chemical exchange process occurs in ~5 ps, and is assigned to direct hydrogen bond migration along the phenylacetylene molecule. The observation of direct hydrogen bond migration can have implications for macromolecular systems. 2D IR vibrational echo spectroscopy and heterodyne detected transient grating (HDTG) spectroscopy (an ultra-sensitive analog of pump-probe spectroscopy) are developed as means of study of the structural and vibrational dynamics of surfaces. The surfaces studied are silica surfaces functionalized with a transition metal carbonyl complex, tricarbonyl (1,10)-phenanthroline rhenium chloride. The functionalization process produces chromophore surface density of 1-2 × 10^14 per cm squared. The high surface density achieved indicates that energy transfer between molecules on the surface could impact the experimental observables probed in 2D IR and HDTG spectroscopy. The theory of excitation transfer induced spectral diffusion has been developed and is capable of calculating the effect of the energy transfer on any spectroscopic observable through a master equation approach. Initial estimates of surface structural dynamics, based on both experimental 2D IR data and theoretical calculations, showed sub-100ps structural dynamics in the molecular monolayers even without the presence of solvent. Furthermore, solvent is shown to accelerate the structural dynamics in a manner that is different from that of bulk solution. Additional surface density dependent experiments indicate the negligible nature of excitation transfer even in these dense systems. The functionalized molecular monolayers are found to have a ~40 ps structural dynamics relaxation time in the absence of solvent. Further investigation of the effects of solvents on the RePhen(CO)3Cl monolayers has been carried out. Immersion in solvent is found to change the infrared spectrum, structural dynamics and vibrational dynamics in ways that differ from the changes evidenced in the bulk. The monolayers were immersed in both solvents that can dissolve RePhen(CO)3Cl and those that cannot. For both hexadecane and D2O, which cannot dissolve the headgroup, the structural dynamics of the monolayer are slowed by the presence of solvent while the vibrational dynamics are not impacted. Polar organic solvents, which can dissolve the headgroup, accelerate the dynamics. Dimethylformamide (DMF) is found to have a particularly strong effect on the structural dynamics of the monolayers, accelerating the timescale from 40 ps to 15 ps, yet DMF has little impact on the vibrational dynamics. Chloroform is found to enhance the vibrational lifetime of the CO symmetric stretch of the RePhen(CO)3Cl headgroups in the monolayer by 50%. These results indicate that the properties of thin films can be modified by the presence of solvent, even in the case when the solvent is repelled by the monolayer.

Watching Ultrafast Molecular Motions with 2D IR Chemical Exchange Spectroscopy

Watching Ultrafast Molecular Motions with 2D IR Chemical Exchange Spectroscopy
Title Watching Ultrafast Molecular Motions with 2D IR Chemical Exchange Spectroscopy PDF eBook
Author Michael D. Fayer
Publisher World Scientific
Pages 383
Release 2011
Genre Science
ISBN 9814355623

Download Watching Ultrafast Molecular Motions with 2D IR Chemical Exchange Spectroscopy Book in PDF, Epub and Kindle

This unique volume presents a comprehensive but accessible introduction to the field of ultrafast two-dimension infrared (2D IR) vibrational echo spectroscopy based on the pioneering work of Professor Michael D Fayer, Department of Chemistry, Stanford University, USA. It contains in one place a qualitative introduction to the field of 2D IR spectroscopy and a comprehensive set of scientific papers that underlie the qualitative discussion. The introductory material contains several detailed illustrations, and is based on the Centenary Lecture at the Indian Institute of Science given by Professor Fayer July 16, 2008 as part of the celebration of the 100th anniversary of the founding of IIS in Bangalore, India. The second part of the volume contains reprints of Fayer's relevant papers. The compilation will be very useful because it presents the historical background, motivation, methodology, and experimental results at a level that is accessible to the non-expert. The reprints of the scientific papers, from review articles to detailed theoretical papers, provide rigorous supporting material so that the reader can delve as deeply as desired into the subject.

Ultrafast Chemical Exchange Spectroscopy

Ultrafast Chemical Exchange Spectroscopy
Title Ultrafast Chemical Exchange Spectroscopy PDF eBook
Author Junrong Zheng
Publisher
Pages 428
Release 2007
Genre
ISBN

Download Ultrafast Chemical Exchange Spectroscopy Book in PDF, Epub and Kindle

Ultrafast Infrared Vibrational Spectroscopy

Ultrafast Infrared Vibrational Spectroscopy
Title Ultrafast Infrared Vibrational Spectroscopy PDF eBook
Author Michael D. Fayer
Publisher CRC Press
Pages 475
Release 2013-03-04
Genre Science
ISBN 1466510145

Download Ultrafast Infrared Vibrational Spectroscopy Book in PDF, Epub and Kindle

The advent of laser-based sources of ultrafast infrared pulses has extended the study of very fast molecular dynamics to the observation of processes manifested through their effects on the vibrations of molecules. In addition, non-linear infrared spectroscopic techniques make it possible to examine intra- and intermolecular interactions and how su

Biological and Biomedical Infrared Spectroscopy

Biological and Biomedical Infrared Spectroscopy
Title Biological and Biomedical Infrared Spectroscopy PDF eBook
Author A. Barth
Publisher IOS Press
Pages 448
Release 2009-09-02
Genre Medical
ISBN 160750457X

Download Biological and Biomedical Infrared Spectroscopy Book in PDF, Epub and Kindle

Although infrared spectroscopy has been applied with success to the study of important biological and biomedical processes for many years, key advances in this vibrant technique have led to its increasing use, ranging from characterisation of individual macromolecules (DNA, RNA, lipids, proteins) to human tissues, cells and their components. Infrared spectroscopy thus has a significant role to play in the analysis of the vast number of genes and proteins being identified by the various genomic sequencing projects. Whilst this book gives an overview of the field it highlights more recent developments, such as the use of bright synchrotron radiation for recording infrared spectra, the development of two-dimensional infrared spectroscopy and the ability to record infrared spectra at ultrafast speeds. The main focus is on the mid-infrared region, since the great majority of studies are carried out in this region but there is increasing use of the near infrared for biomedical applications and a chapter is devoted to this part of the spectrum. Major advances in theoretical analysis have also enabled better interpretation of the infrared spectra of biological molecules and these are covered. The editors, Professor Andreas Barth of Stockholm University, Stockholm, Sweden and Dr Parvez I. Haris of De Montfort University, Leicester, U.K., who both have extensive research experience in biological infrared spectroscopy per se and in its use in the solution of biophysical problems, have felt it timely therefore to bring together this book. The book is intended for use both by research scientists already active in the use of biological infrared spectroscopy and for those coming new to the technique. Graduate students will also find it useful as an introduction to the technique.

Ionic Liquids II

Ionic Liquids II
Title Ionic Liquids II PDF eBook
Author Barbara Kirchner
Publisher Springer
Pages 295
Release 2018-09-03
Genre Science
ISBN 3319897942

Download Ionic Liquids II Book in PDF, Epub and Kindle

​The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. The chapters “Ionic Liquid–Liquid Chromatography: A New General Purpose Separation Methodology”, “Proteins in Ionic Liquids: Current Status of Experiments and Simulations”, “Lewis Acidic Ionic Liquids” and "Quantum Chemical Modeling of Hydrogen Bonding in Ionic Liquids" are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.