Ultimate Step by Step Guide to Machine Learning Using Python
Title | Ultimate Step by Step Guide to Machine Learning Using Python PDF eBook |
Author | Daneyal Anis |
Publisher | |
Pages | 68 |
Release | 2020-02-17 |
Genre | |
ISBN |
*Start your Data Science career using Python today!* Are you ready to start your new exciting career? Ready to crush your machine learning career goals? Are you overwhelmed with complexity of the books on this subject?Then let this breezy and fun little book on Python and machine learning models make you a data scientist in 7 days! First part of this book introduces Python basics including: 1) Data Structures like Pandas 2) Foundational libraries like Numpy, Seaborn and Scikit-Learn Second part of this book shows you how to build predictive machine learning models step by step using techniques such as: 1) Regression analysis 2) Decision tree analysis 3) Training and testing data models 4) And much more! After reading this book you will be able to: 1) Code in Python with confidence 2) Build new machine learning models from scratch 3) Know how to clean and prepare your data for analytics 4) Speak confidently about statistical analysis techniques Data Science was ranked the fast-growing field by LinkedIn and Data Scientist is one of the most highly sought after and lucrative careers in the world! If you are on the fence about making the leap to a new and lucrative career, this is the book for you! What sets this book apart from other books on the topic of Python and Machine learning: 1) Step by step code examples and explanation 2) Complex concepts explained visually 3) Real world applicability of the machine learning models introduced 4) Bonus free code samples that you can try yourself without any prior experience in Python! What do I need to get started? You will have a step by step action plan in place once you finish this book and finally feel that you, can master data science and machine learning and start lucrative and rewarding career! Ready to dive in to the exciting world of Python and Machine Learning? Then scroll up to the top and hit that BUY BUTTON!
Ultimate Step by Step Guide to Deep Learning Using Python
Title | Ultimate Step by Step Guide to Deep Learning Using Python PDF eBook |
Author | Daneyal Anis |
Publisher | |
Pages | 200 |
Release | 2020-07-19 |
Genre | |
ISBN |
*Start your Data Science career using Python today!*Are you ready to start your new exciting career? Ready to master artificial intelligence and deep learning concepts?Are you overwhelmed with complexity of the books on this subject?Then let this breezy and fun little book on Python, Machine Learning and Deep Learning models make you a Data Scientist in 7 days!This book continues from where the first book in the series, Ultimate Step by Step Guide to Machine Learning Using Python, left of. In the first book you were introduced to Python concepts such as: -Data Structures like Pandas -Foundational libraries like Numpy, Seaborn and Scikit-Learn-Regression analysis-Classification-Clustering-Association Learning-Dimension ReductionThis book builds on those concepts to expand on Machine Learning algorithms like: -Linear and Logistical regression-Decision tree-Support vector machines (SVM)After that, this book takes you on a journey into Deep Learning and Neural Networks with important concepts and libraries like: -Convolutional and Recurrent Neural Networks-TensorFlow-Keras-PyTorch-Keras-Apache MXNet-Microsoft Cognitive Toolkit (CNTK)The final part of the book covers all foundational concepts that are required for Amazon Web Services (AWS) Certified Machine Learning Specialization by explaining how to deploy your models at scale on Cloud technologies. While AWS is used in the book for illustrative purposes, Microsoft Azure and Google Cloud are also introduced as alternative cloud technologies. After reading this book you will be able to: -Code in Python with confidence-Build new machine learning and deep learning models from scratch-Know how to clean and prepare your data for analytics-Speak confidently about statistical analysis techniquesData Science was ranked the fast-growing field by LinkedIn and Data Scientist is one of the most highly sought after and lucrative careers in the world!If you are on the fence about making the leap to a new and lucrative career, this is the book for you!What sets this book apart from other books on the topic of Python and Machine learning: -Step by step code examples and explanation-Complex concepts explained visually-Real world applicability of the machine learning and deep learning models introducedWhat do I need to get started?You will have a step by step action plan in place once you finish this book and finally feel that you, can master data science and artificial intelligence and start a lucrative and rewarding career! Ready to dive in to the exciting world of Python and Deep Learning?Then scroll up to the top and hit that BUY BUTTON!
Neural Network Projects with Python
Title | Neural Network Projects with Python PDF eBook |
Author | James Loy |
Publisher | Packt Publishing Ltd |
Pages | 301 |
Release | 2019-02-28 |
Genre | Computers |
ISBN | 1789133319 |
Build your Machine Learning portfolio by creating 6 cutting-edge Artificial Intelligence projects using neural networks in Python Key FeaturesDiscover neural network architectures (like CNN and LSTM) that are driving recent advancements in AIBuild expert neural networks in Python using popular libraries such as KerasIncludes projects such as object detection, face identification, sentiment analysis, and moreBook Description Neural networks are at the core of recent AI advances, providing some of the best resolutions to many real-world problems, including image recognition, medical diagnosis, text analysis, and more. This book goes through some basic neural network and deep learning concepts, as well as some popular libraries in Python for implementing them. It contains practical demonstrations of neural networks in domains such as fare prediction, image classification, sentiment analysis, and more. In each case, the book provides a problem statement, the specific neural network architecture required to tackle that problem, the reasoning behind the algorithm used, and the associated Python code to implement the solution from scratch. In the process, you will gain hands-on experience with using popular Python libraries such as Keras to build and train your own neural networks from scratch. By the end of this book, you will have mastered the different neural network architectures and created cutting-edge AI projects in Python that will immediately strengthen your machine learning portfolio. What you will learnLearn various neural network architectures and its advancements in AIMaster deep learning in Python by building and training neural networkMaster neural networks for regression and classificationDiscover convolutional neural networks for image recognitionLearn sentiment analysis on textual data using Long Short-Term MemoryBuild and train a highly accurate facial recognition security systemWho this book is for This book is a perfect match for data scientists, machine learning engineers, and deep learning enthusiasts who wish to create practical neural network projects in Python. Readers should already have some basic knowledge of machine learning and neural networks.
Deep Learning with PyTorch
Title | Deep Learning with PyTorch PDF eBook |
Author | Luca Pietro Giovanni Antiga |
Publisher | Simon and Schuster |
Pages | 518 |
Release | 2020-07-01 |
Genre | Computers |
ISBN | 1638354073 |
“We finally have the definitive treatise on PyTorch! It covers the basics and abstractions in great detail. I hope this book becomes your extended reference document.” —Soumith Chintala, co-creator of PyTorch Key Features Written by PyTorch’s creator and key contributors Develop deep learning models in a familiar Pythonic way Use PyTorch to build an image classifier for cancer detection Diagnose problems with your neural network and improve training with data augmentation Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About The Book Every other day we hear about new ways to put deep learning to good use: improved medical imaging, accurate credit card fraud detection, long range weather forecasting, and more. PyTorch puts these superpowers in your hands. Instantly familiar to anyone who knows Python data tools like NumPy and Scikit-learn, PyTorch simplifies deep learning without sacrificing advanced features. It’s great for building quick models, and it scales smoothly from laptop to enterprise. Deep Learning with PyTorch teaches you to create deep learning and neural network systems with PyTorch. This practical book gets you to work right away building a tumor image classifier from scratch. After covering the basics, you’ll learn best practices for the entire deep learning pipeline, tackling advanced projects as your PyTorch skills become more sophisticated. All code samples are easy to explore in downloadable Jupyter notebooks. What You Will Learn Understanding deep learning data structures such as tensors and neural networks Best practices for the PyTorch Tensor API, loading data in Python, and visualizing results Implementing modules and loss functions Utilizing pretrained models from PyTorch Hub Methods for training networks with limited inputs Sifting through unreliable results to diagnose and fix problems in your neural network Improve your results with augmented data, better model architecture, and fine tuning This Book Is Written For For Python programmers with an interest in machine learning. No experience with PyTorch or other deep learning frameworks is required. About The Authors Eli Stevens has worked in Silicon Valley for the past 15 years as a software engineer, and the past 7 years as Chief Technical Officer of a startup making medical device software. Luca Antiga is co-founder and CEO of an AI engineering company located in Bergamo, Italy, and a regular contributor to PyTorch. Thomas Viehmann is a Machine Learning and PyTorch speciality trainer and consultant based in Munich, Germany and a PyTorch core developer. Table of Contents PART 1 - CORE PYTORCH 1 Introducing deep learning and the PyTorch Library 2 Pretrained networks 3 It starts with a tensor 4 Real-world data representation using tensors 5 The mechanics of learning 6 Using a neural network to fit the data 7 Telling birds from airplanes: Learning from images 8 Using convolutions to generalize PART 2 - LEARNING FROM IMAGES IN THE REAL WORLD: EARLY DETECTION OF LUNG CANCER 9 Using PyTorch to fight cancer 10 Combining data sources into a unified dataset 11 Training a classification model to detect suspected tumors 12 Improving training with metrics and augmentation 13 Using segmentation to find suspected nodules 14 End-to-end nodule analysis, and where to go next PART 3 - DEPLOYMENT 15 Deploying to production
Python Machine Learning
Title | Python Machine Learning PDF eBook |
Author | Wei-Meng Lee |
Publisher | John Wiley & Sons |
Pages | 324 |
Release | 2019-04-04 |
Genre | Computers |
ISBN | 1119545692 |
Python makes machine learning easy for beginners and experienced developers With computing power increasing exponentially and costs decreasing at the same time, there is no better time to learn machine learning using Python. Machine learning tasks that once required enormous processing power are now possible on desktop machines. However, machine learning is not for the faint of heart—it requires a good foundation in statistics, as well as programming knowledge. Python Machine Learning will help coders of all levels master one of the most in-demand programming skillsets in use today. Readers will get started by following fundamental topics such as an introduction to Machine Learning and Data Science. For each learning algorithm, readers will use a real-life scenario to show how Python is used to solve the problem at hand. • Python data science—manipulating data and data visualization • Data cleansing • Understanding Machine learning algorithms • Supervised learning algorithms • Unsupervised learning algorithms • Deploying machine learning models Python Machine Learning is essential reading for students, developers, or anyone with a keen interest in taking their coding skills to the next level.
Python Crash Course
Title | Python Crash Course PDF eBook |
Author | James Deep |
Publisher | |
Pages | 128 |
Release | 2019-11-30 |
Genre | |
ISBN | 9781710499087 |
If you want to learn the Python coding language as easily as possible, then keep reading. The Python language is the right option for you to choose when you want to learn a computer language, and you want to make sure that it is as clear as possible. This book follows a fairly easy and ancient approach. It puts more emphasis on solving problems, programming, and design as the major skills of a computer programmer. There are so many things that we can do when it comes to working with the Python coding language and how we can make this work for our basic, and more complex, coding needs. Obviously, these basic features are shown clearly using Python language. We will go to take a look at a lot of the different parts that come with coding in Python, and how to write out some of your codes in no time. Inside this book you will find Python benefits Handling things in Python like lists, tuples, and operators. The functions in Python. Why an OOP language is so important. How to write your Python loops. The conditional statements How to handle exceptions Python encapsulation Python CGI & GUI ...and many more amazing and interesting topics! There are a lot of great features that come with using the Python language, and learning how to make this coding language work for you is the ultimate goal of this guide. When you are ready to learn these basics of coding in the Python language, make sure to check out this book to get started! Want to know more? Scroll to the top of the page and click the "buy now" button!
Machine Learning
Title | Machine Learning PDF eBook |
Author | Rudolph Russell |
Publisher | Createspace Independent Publishing Platform |
Pages | 106 |
Release | 2018-05-22 |
Genre | |
ISBN | 9781719528405 |
MACHINE LEARNING - PYTHON Buy the Paperback version of this book, and get the Kindle eBook version included for FREE! Do You Want to Become An Expert Of Machine Learning?? Start Getting this Book and Follow My Step by Step Explanations! Click Add To Cart Now! This book is for anyone who would like to learn how to develop machine-learning systems. We will cover the most important concepts about machine learning algorithms, in both a theoretical and a practical way, and we'll implement many machine-learning algorithms using the Scikit-learn library in the Python programming language. In the first chapter, you'll learn the most important concepts of machine learning, and, in the next chapter, you'll work mainly with the classification. In the last chapter you'll learn how to train your model. I assume that you've knowledge of the basics of programming This book contains illustrations and step-by-step explanations with bullet points and exercises for easy and enjoyable learning. Benefits of reading this book that you're not going to find anywhere else: Introduction to Machine Learning Classification How to train a Model Different Models Combinations Don't miss out on this new step by step guide to Machine Learning. All you need to do is scroll up and click on the BUY NOW button to learn all about it!