Two-Dimensional Geometric Variational Problems

Two-Dimensional Geometric Variational Problems
Title Two-Dimensional Geometric Variational Problems PDF eBook
Author Jürgen Jost
Publisher
Pages 256
Release 1991-03-29
Genre Mathematics
ISBN

Download Two-Dimensional Geometric Variational Problems Book in PDF, Epub and Kindle

This monograph treats variational problems for mappings from a surface equipped with a conformal structure into Euclidean space or a Riemannian manifold. Presents a general theory of such variational problems, proving existence and regularity theorems with particular conceptual emphasis on the geometric aspects of the theory and thorough investigation of the connections with complex analysis. Among the topics covered are: Plateau's problem, the regularity theory of solutions, a variational approach for obtaining various conformal representation theorems, a general existence theorem for harmonic mappings, and a new approach to Teichmuller theory via harmonic maps.

Sets of Finite Perimeter and Geometric Variational Problems

Sets of Finite Perimeter and Geometric Variational Problems
Title Sets of Finite Perimeter and Geometric Variational Problems PDF eBook
Author Francesco Maggi
Publisher Cambridge University Press
Pages 475
Release 2012-08-09
Genre Mathematics
ISBN 1139560891

Download Sets of Finite Perimeter and Geometric Variational Problems Book in PDF, Epub and Kindle

The marriage of analytic power to geometric intuition drives many of today's mathematical advances, yet books that build the connection from an elementary level remain scarce. This engaging introduction to geometric measure theory bridges analysis and geometry, taking readers from basic theory to some of the most celebrated results in modern analysis. The theory of sets of finite perimeter provides a simple and effective framework. Topics covered include existence, regularity, analysis of singularities, characterization and symmetry results for minimizers in geometric variational problems, starting from the basics about Hausdorff measures in Euclidean spaces and ending with complete proofs of the regularity of area-minimizing hypersurfaces up to singular sets of codimension 8. Explanatory pictures, detailed proofs, exercises and remarks providing heuristic motivation and summarizing difficult arguments make this graduate-level textbook suitable for self-study and also a useful reference for researchers. Readers require only undergraduate analysis and basic measure theory.

Lectures on Geometric Variational Problems

Lectures on Geometric Variational Problems
Title Lectures on Geometric Variational Problems PDF eBook
Author Seiki Nishikawa
Publisher Springer Science & Business Media
Pages 160
Release 2012-12-06
Genre Mathematics
ISBN 4431684026

Download Lectures on Geometric Variational Problems Book in PDF, Epub and Kindle

In this volume are collected notes of lectures delivered at the First In ternational Research Institute of the Mathematical Society of Japan. This conference, held at Tohoku University in July 1993, was devoted to geometry and global analysis. Subsequent to the conference, in answer to popular de mand from the participants, it was decided to publish the notes of the survey lectures. Written by the lecturers themselves, all experts in their respective fields, these notes are here presented in a single volume. It is hoped that they will provide a vivid account of the current research, from the introduc tory level up to and including the most recent results, and will indicate the direction to be taken by future researeh. This compilation begins with Jean-Pierre Bourguignon's notes entitled "An Introduction to Geometric Variational Problems," illustrating the gen eral framework of the field with many examples and providing the reader with a broad view of the current research. Following this, Kenji Fukaya's notes on "Geometry of Gauge Fields" are concerned with gauge theory and its applications to low-dimensional topology, without delving too deeply into technical detail. Special emphasis is placed on explaining the ideas of infi nite dimensional geometry that, in the literature, are often hidden behind rigorous formulations or technical arguments.

Variational Problems in Topology

Variational Problems in Topology
Title Variational Problems in Topology PDF eBook
Author A.T. Fomenko
Publisher Routledge
Pages 290
Release 2019-06-21
Genre Mathematics
ISBN 1351405675

Download Variational Problems in Topology Book in PDF, Epub and Kindle

Many of the modern variational problems of topology arise in different but overlapping fields of scientific study: mechanics, physics and mathematics. In this work, Professor Fomenko offers a concise and clear explanation of some of these problems (both solved and unsolved), using current methods of analytical topology. His book falls into three interrelated sections. The first gives an elementary introduction to some of the most important concepts of topology used in modern physics and mechanics: homology and cohomology, and fibration. The second investigates the significant role of Morse theory in modern aspects of the topology of smooth manifolds, particularly those of three and four dimensions. The third discusses minimal surfaces and harmonic mappings, and presents a number of classic physical experiments that lie at the foundations of modern understanding of multidimensional variational calculus. The author's skilful exposition of these topics and his own graphic illustrations give an unusual motivation to the theory expounded, and his work is recommended reading for specialists and non-specialists alike, involved in the fields of physics and mathematics at both undergraduate and graduate levels.

Variational Problems in Riemannian Geometry

Variational Problems in Riemannian Geometry
Title Variational Problems in Riemannian Geometry PDF eBook
Author Paul Baird
Publisher Birkhäuser
Pages 158
Release 2012-12-06
Genre Mathematics
ISBN 3034879687

Download Variational Problems in Riemannian Geometry Book in PDF, Epub and Kindle

This book collects invited contributions by specialists in the domain of elliptic partial differential equations and geometric flows. There are introductory survey articles as well as papers presenting the latest research results. Among the topics covered are blow-up theory for second order elliptic equations; bubbling phenomena in the harmonic map heat flow; applications of scans and fractional power integrands; heat flow for the p-energy functional; Ricci flow and evolution by curvature of networks of curves in the plane.

Variational Analysis

Variational Analysis
Title Variational Analysis PDF eBook
Author R. Tyrrell Rockafellar
Publisher Springer Science & Business Media
Pages 747
Release 2009-06-26
Genre Mathematics
ISBN 3642024319

Download Variational Analysis Book in PDF, Epub and Kindle

From its origins in the minimization of integral functionals, the notion of variations has evolved greatly in connection with applications in optimization, equilibrium, and control. This book develops a unified framework and provides a detailed exposition of variational geometry and subdifferential calculus in their current forms beyond classical and convex analysis. Also covered are set-convergence, set-valued mappings, epi-convergence, duality, and normal integrands.

Sets of Finite Perimeter and Geometric Variational Problems

Sets of Finite Perimeter and Geometric Variational Problems
Title Sets of Finite Perimeter and Geometric Variational Problems PDF eBook
Author Francesco Maggi
Publisher Cambridge University Press
Pages 475
Release 2012-08-09
Genre Mathematics
ISBN 1107021030

Download Sets of Finite Perimeter and Geometric Variational Problems Book in PDF, Epub and Kindle

An engaging graduate-level introduction that bridges analysis and geometry. Suitable for self-study and a useful reference for researchers.