Turnpike Conditions in Infinite Dimensional Optimal Control
Title | Turnpike Conditions in Infinite Dimensional Optimal Control PDF eBook |
Author | Alexander J. Zaslavski |
Publisher | Springer |
Pages | 578 |
Release | 2019-07-23 |
Genre | Mathematics |
ISBN | 3030201783 |
This book provides a comprehensive study of turnpike phenomenon arising in optimal control theory. The focus is on individual (non-generic) turnpike results which are both mathematically significant and have numerous applications in engineering and economic theory. All results obtained in the book are new. New approaches, techniques, and methods are rigorously presented and utilize research from finite-dimensional variational problems and discrete-time optimal control problems to find the necessary conditions for the turnpike phenomenon in infinite dimensional spaces. The semigroup approach is employed in the discussion as well as PDE descriptions of continuous-time dynamics. The main results on sufficient and necessary conditions for the turnpike property are completely proved and the numerous illustrative examples support the material for the broad spectrum of experts. Mathematicians interested in the calculus of variations, optimal control and in applied functional analysis will find this book a useful guide to the turnpike phenomenon in infinite dimensional spaces. Experts in economic and engineering modeling as well as graduate students will also benefit from the developed techniques and obtained results.
Optimal Control Problems Arising in Mathematical Economics
Title | Optimal Control Problems Arising in Mathematical Economics PDF eBook |
Author | Alexander J. Zaslavski |
Publisher | Springer Nature |
Pages | 387 |
Release | 2022-06-28 |
Genre | Mathematics |
ISBN | 981169298X |
This book is devoted to the study of two large classes of discrete-time optimal control problems arising in mathematical economics. Nonautonomous optimal control problems of the first class are determined by a sequence of objective functions and sequence of constraint maps. They correspond to a general model of economic growth. We are interested in turnpike properties of approximate solutions and in the stability of the turnpike phenomenon under small perturbations of objective functions and constraint maps. The second class of autonomous optimal control problems corresponds to another general class of models of economic dynamics which includes the Robinson–Solow–Srinivasan model as a particular case. In Chap. 1 we discuss turnpike properties for a large class of discrete-time optimal control problems studied in the literature and for the Robinson–Solow–Srinivasan model. In Chap. 2 we introduce the first class of optimal control problems and study its turnpike property. This class of problems is also discussed in Chaps. 3–6. In Chap. 3 we study the stability of the turnpike phenomenon under small perturbations of the objective functions. Analogous results for problems with discounting are considered in Chap. 4. In Chap. 5 we study the stability of the turnpike phenomenon under small perturbations of the objective functions and the constraint maps. Analogous results for problems with discounting are established in Chap. 6. The results of Chaps. 5 and 6 are new. The second class of problems is studied in Chaps. 7–9. In Chap. 7 we study the turnpike properties. The stability of the turnpike phenomenon under small perturbations of the objective functions is established in Chap. 8. In Chap. 9 we establish the stability of the turnpike phenomenon under small perturbations of the objective functions and the constraint maps. The results of Chaps. 8 and 9 are new. In Chap. 10 we study optimal control problems related to a model of knowledge-based endogenous economic growth and show the existence of trajectories of unbounded economic growth and provide estimates for the growth rate.
Turnpike Phenomenon and Infinite Horizon Optimal Control
Title | Turnpike Phenomenon and Infinite Horizon Optimal Control PDF eBook |
Author | Alexander J. Zaslavski |
Publisher | Springer |
Pages | 377 |
Release | 2014-09-04 |
Genre | Mathematics |
ISBN | 3319088289 |
This book is devoted to the study of the turnpike phenomenon and describes the existence of solutions for a large variety of infinite horizon optimal control classes of problems. Chapter 1 provides introductory material on turnpike properties. Chapter 2 studies the turnpike phenomenon for discrete-time optimal control problems. The turnpike properties of autonomous problems with extended-value integrands are studied in Chapter 3. Chapter 4 focuses on large classes of infinite horizon optimal control problems without convexity (concavity) assumptions. In Chapter 5, the turnpike results for a class of dynamic discrete-time two-player zero-sum game are proven. This thorough exposition will be very useful for mathematicians working in the fields of optimal control, the calculus of variations, applied functional analysis and infinite horizon optimization. It may also be used as a primary text in a graduate course in optimal control or as supplementary text for a variety of courses in other disciplines. Researchers in other fields such as economics and game theory, where turnpike properties are well known, will also find this Work valuable.
Optimal Control Problems Related to the Robinson–Solow–Srinivasan Model
Title | Optimal Control Problems Related to the Robinson–Solow–Srinivasan Model PDF eBook |
Author | Alexander J. Zaslavski |
Publisher | Springer Nature |
Pages | 354 |
Release | 2021-08-07 |
Genre | Mathematics |
ISBN | 9811622523 |
This book is devoted to the study of classes of optimal control problems arising in economic growth theory, related to the Robinson–Solow–Srinivasan (RSS) model. The model was introduced in the 1960s by economists Joan Robinson, Robert Solow, and Thirukodikaval Nilakanta Srinivasan and was further studied by Robinson, Nobuo Okishio, and Joseph Stiglitz. Since then, the study of the RSS model has become an important element of economic dynamics. In this book, two large general classes of optimal control problems, both of them containing the RSS model as a particular case, are presented for study. For these two classes, a turnpike theory is developed and the existence of solutions to the corresponding infinite horizon optimal control problems is established. The book contains 9 chapters. Chapter 1 discusses turnpike properties for some optimal control problems that are known in the literature, including problems corresponding to the RSS model. The first class of optimal control problems is studied in Chaps. 2–6. In Chap. 2, infinite horizon optimal control problems with nonautonomous optimality criteria are considered. The utility functions, which determine the optimality criterion, are nonconcave. This class of models contains the RSS model as a particular case. The stability of the turnpike phenomenon of the one-dimensional nonautonomous concave RSS model is analyzed in Chap. 3. The following chapter takes up the study of a class of autonomous nonconcave optimal control problems, a subclass of problems considered in Chap. 2. The equivalence of the turnpike property and the asymptotic turnpike property, as well as the stability of the turnpike phenomenon, is established. Turnpike conditions and the stability of the turnpike phenomenon for nonautonomous problems are examined in Chap. 5, with Chap. 6 devoted to the study of the turnpike properties for the one-dimensional nonautonomous nonconcave RSS model. The utility functions, which determine the optimality criterion, are nonconcave. The class of RSS models is identified with a complete metric space of utility functions. Using the Baire category approach, the turnpike phenomenon is shown to hold for most of the models. Chapter 7 begins the study of the second large class of autonomous optimal control problems, and turnpike conditions are established. The stability of the turnpike phenomenon for this class of problems is investigated further in Chaps. 8 and 9.
Stabilization of Distributed Parameter Systems: Design Methods and Applications
Title | Stabilization of Distributed Parameter Systems: Design Methods and Applications PDF eBook |
Author | Grigory Sklyar |
Publisher | Springer Nature |
Pages | 139 |
Release | 2021-03-01 |
Genre | Science |
ISBN | 3030617424 |
This book presents recent results and envisages new solutions of the stabilization problem for infinite-dimensional control systems. Its content is based on the extended versions of presentations at the Thematic Minisymposium “Stabilization of Distributed Parameter Systems: Design Methods and Applications” at ICIAM 2019, held in Valencia from 15 to 19 July 2019. This volume aims at bringing together contributions on stabilizing control design for different classes of dynamical systems described by partial differential equations, functional-differential equations, delay equations, and dynamical systems in abstract spaces. This includes new results in the theory of nonlinear semigroups, port-Hamiltonian systems, turnpike phenomenon, and further developments of Lyapunov's direct method. The scope of the book also covers applications of these methods to mathematical models in continuum mechanics and chemical engineering. It is addressed to readers interested in control theory, differential equations, and dynamical systems.
Numerical Control: Part B
Title | Numerical Control: Part B PDF eBook |
Author | Emmanuel Trélat |
Publisher | Elsevier |
Pages | 662 |
Release | 2023-02-20 |
Genre | Mathematics |
ISBN | 0323858260 |
Numerical Control: Part B, Volume 24 in the Handbook of Numerical Analysis series, highlights new advances in the field, with this new volume presenting interesting chapters written by an international board of authors. Chapters in this volume include Control problems in the coefficients and the domain for linear elliptic equations, Computational approaches for extremal geometric eigenvalue problems, Non-overlapping domain decomposition in space and time for PDE-constrained optimal control problems on networks, Feedback Control of Time-dependent Nonlinear PDEs with Applications in Fluid Dynamics, Stabilization of the Navier-Stokes equations - Theoretical and numerical aspects, Reconstruction algorithms based on Carleman estimates, and more. Other sections cover Discrete time formulations as time discretization strategies in data assimilation, Back and forth iterations/Time reversal methods, Unbalanced Optimal Transport: from Theory to Numerics, An ADMM Approach to the Exact and Approximate Controllability of Parabolic Equations, Nonlocal balance laws -- an overview over recent results, Numerics and control of conservation laws, Numerical approaches for simulation and control of superconducting quantum circuits, and much more. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Handbook of Numerical Analysis series - Updated release includes the latest information on Numerical Control
Turnpike Theory for the Robinson–Solow–Srinivasan Model
Title | Turnpike Theory for the Robinson–Solow–Srinivasan Model PDF eBook |
Author | Alexander J. Zaslavski |
Publisher | Springer Nature |
Pages | 448 |
Release | 2021-01-04 |
Genre | Mathematics |
ISBN | 3030603075 |
This book is devoted to the study of a class of optimal control problems arising in mathematical economics, related to the Robinson–Solow–Srinivasan (RSS) model. It will be useful for researches interested in the turnpike theory, infinite horizon optimal control and their applications, and mathematical economists. The RSS is a well-known model of economic dynamics that was introduced in the 1960s and as many other models of economic dynamics, the RSS model is determined by an objective function (a utility function) and a set-valued mapping (a technology map). The set-valued map generates a dynamical system whose trajectories are under consideration and the objective function determines an optimality criterion. The goal is to find optimal trajectories of the dynamical system, using the optimality criterion. Chapter 1 discusses turnpike properties for some classes of discrete time optimal control problems. Chapter 2 present the description of the RSS model and discuss its basic properties. Infinite horizon optimal control problems, related to the RSS model are studied in Chapter 3. Turnpike properties for the RSS model are analyzed in Chapter 4. Chapter 5 studies infinite horizon optimal control problems related to the RSS model with a nonconcave utility function. Chapter 6 focuses on infinite horizon optimal control problems with nonautonomous optimality criterions. Chapter 7 contains turnpike results for a class of discrete-time optimal control problems. Chapter 8 discusses the RSS model and compares different optimality criterions. Chapter 9 is devoted to the study of the turnpike properties for the RSS model. In Chapter 10 the one-dimensional autonomous RSS model is considered and the continuous time RSS model is studied in Chapter 11.