Turning Data into Insight with IBM Machine Learning for z/OS
Title | Turning Data into Insight with IBM Machine Learning for z/OS PDF eBook |
Author | Samantha Buhler |
Publisher | IBM Redbooks |
Pages | 202 |
Release | 2018-09-11 |
Genre | Computers |
ISBN | 0738457132 |
The exponential growth in data over the last decade coupled with a drastic drop in cost of storage has enabled organizations to amass a large amount of data. This vast data becomes the new natural resource that these organizations must tap in to innovate and stay ahead of the competition, and they must do so in a secure environment that protects the data throughout its lifecyle and data access in real time at any time. When it comes to security, nothing can rival IBM® Z, the multi-workload transactional platform that powers the core business processes of the majority of the Fortune 500 enterprises with unmatched security, availability, reliability, and scalability. With core transactions and data originating on IBM Z, it simply makes sense for analytics to exist and run on the same platform. For years, some businesses chose to move their sensitive data off IBM Z to platforms that include data lakes, Hadoop, and warehouses for analytics processing. However, the massive growth of digital data, the punishing cost of security exposures as well as the unprecedented demand for instant actionable intelligence from data in real time have convinced them to rethink that decision and, instead, embrace the strategy of data gravity for analytics. At the core of data gravity is the conviction that analytics must exist and run where the data resides. An IBM client eloquently compares this change in analytics strategy to a shift from "moving the ocean to the boat to moving the boat to the ocean," where the boat is the analytics and the ocean is the data. IBM respects and invests heavily on data gravity because it recognizes the tremendous benefits that data gravity can deliver to you, including reduced cost and minimized security risks. IBM Machine Learning for z/OS® is one of the offerings that decidedly move analytics to Z where your mission-critical data resides. In the inherently secure Z environment, your machine learning scoring services can co-exist with your transactional applications and data, supporting high throughput and minimizing response time while delivering consistent service level agreements (SLAs). This book introduces Machine Learning for z/OS version 1.1.0 and describes its unique value proposition. It provides step-by-step guidance for you to get started with the program, including best practices for capacity planning, installation and configuration, administration and operation. Through a retail example, the book shows how you can use the versatile and intuitive web user interface to quickly train, build, evaluate, and deploy a model. Most importantly, it examines use cases across industries to illustrate how you can easily turn your massive data into valuable insights with Machine Learning for z/OS.
Machine Learning with Business Rules on IBM Z: Acting on Your Insights
Title | Machine Learning with Business Rules on IBM Z: Acting on Your Insights PDF eBook |
Author | Mike Johnson |
Publisher | IBM Redbooks |
Pages | 44 |
Release | 2019-12-11 |
Genre | Computers |
ISBN | 0738456926 |
This Redpaper introduces the integration between two IBM products that you might like to consider when implementing a modern agile solution on your Z systems. The document briefly introduces Operational Decision Manager on z/OS and Machine learning on z/OS. In the case of Machine Learning we focus on the aspect of real-time scoring models and how these can be used with Business Rules to give better decisions. Note: Important changes since this document was written: This document was written for an older release of Operational Decision Manager for z/OS (ODM for z/OS). ODM for z/OS 8.9.1 required the writing of custom Java code to access a Watson Machine Learning for z/OS Scoring Service (this can be seen in ). Since that time ODM for z/OS version 8.10.1 has been released and much improves the integration experience. Integrating the two products no longer requires custom Java code. Using ODM for z/OS 8.10.1 or later you can use an automated wizard in the ODM tooling to: Browse and select a model from Watson Machine Learning Import the Machine Learning data model into your rule project Automatically generate a template rule that integrates a call to the Watson Machine Learning scoring service Download and read this document for: Individual introductions to ODM for z/OS and Machine learning Discussions on the benefits of using the two technologies together Information on integrating if you have not yet updated to ODM for z/OS 8.10.1 For information about the machine learning integration in ODM for z/OS 8.10.1 see IBM Watson Machine Learning for z/OS integration topic in the ODM for z/OS 8.10.x Knowledge Center
Optimized Inferencing and Integration with AI on IBM zSystems: Introduction, Methodology, and Use Cases
Title | Optimized Inferencing and Integration with AI on IBM zSystems: Introduction, Methodology, and Use Cases PDF eBook |
Author | Makenzie Manna |
Publisher | IBM Redbooks |
Pages | 128 |
Release | 2022-11-30 |
Genre | Computers |
ISBN | 0738460923 |
In today's fast-paced, ever-growing digital world, you face various new and complex business problems. To help resolve these problems, enterprises are embedding artificial intelligence (AI) into their mission-critical business processes and applications to help improve operations, optimize performance, personalize the user experience, and differentiate themselves from the competition. Furthermore, the use of AI on the IBM® zSystems platform, where your mission-critical transactions, data, and applications are installed, is a key aspect of modernizing business-critical applications while maintaining strict service-level agreements (SLAs) and security requirements. This colocation of data and AI empowers your enterprise to optimally and easily deploy and infuse AI capabilities into your enterprise workloads with the most recent and relevant data available in real time, which enables a more transparent, accurate, and dependable AI experience. This IBM Redpaper publication introduces and explains AI technologies and hardware optimizations, and demonstrates how to leverage certain capabilities and components to enable AI solutions in business-critical use cases, such as fraud detection and credit risk scoring, on the platform. Real-time inferencing with AI models, a capability that is critical to certain industries and use cases, now can be implemented with optimized performance thanks to innovations like IBM zSystems Integrated Accelerator for AI embedded in the Telum chip within IBM z16TM. This publication describes and demonstrates the implementation and integration of the two end-to-end solutions (fraud detection and credit risk), from developing and training the AI models to deploying the models in an IBM z/OS® V2R5 environment on IBM z16 hardware, and integrating AI functions into an application, for example an IBM z/OS Customer Information Control System (IBM CICS®) application. We describe performance optimization recommendations and considerations when leveraging AI technology on the IBM zSystems platform, including optimizations for micro-batching in IBM Watson® Machine Learning for z/OS. The benefits that are derived from the solutions also are described in detail, including how the open-source AI framework portability of the IBM zSystems platform enables model development and training to be done anywhere, including on IBM zSystems, and enables easy integration to deploy on IBM zSystems for optimal inferencing. Thus, allowing enterprises to uncover insights at the transaction-level while taking advantage of the speed, depth, and securability of the platform. This publication is intended for technical specialists, site reliability engineers, architects, system programmers, and systems engineers. Technologies that are covered include TensorFlow Serving, WMLz, IBM Cloud Pak® for Data (CP4D), IBM z/OS Container Extensions (zCX), IBM CICS, Open Neural Network Exchange (ONNX), and IBM Deep Learning Compiler (zDLC).
Systems of Insight for Digital Transformation: Using IBM Operational Decision Manager Advanced and Predictive Analytics
Title | Systems of Insight for Digital Transformation: Using IBM Operational Decision Manager Advanced and Predictive Analytics PDF eBook |
Author | Whei-Jen Chen |
Publisher | IBM Redbooks |
Pages | 266 |
Release | 2015-12-03 |
Genre | Computers |
ISBN | 073844118X |
Systems of record (SORs) are engines that generates value for your business. Systems of engagement (SOE) are always evolving and generating new customer-centric experiences and new opportunities to capitalize on the value in the systems of record. The highest value is gained when systems of record and systems of engagement are brought together to deliver insight. Systems of insight (SOI) monitor and analyze what is going on with various behaviors in the systems of engagement and information being stored or transacted in the systems of record. SOIs seek new opportunities, risks, and operational behavior that needs to be reported or have action taken to optimize business outcomes. Systems of insight are at the core of the Digital Experience, which tries to derive insights from the enormous amount of data generated by automated processes and customer interactions. Systems of Insight can also provide the ability to apply analytics and rules to real-time data as it flows within, throughout, and beyond the enterprise (applications, databases, mobile, social, Internet of Things) to gain the wanted insight. Deriving this insight is a key step toward being able to make the best decisions and take the most appropriate actions. Examples of such actions are to improve the number of satisfied clients, identify clients at risk of leaving and incentivize them to stay loyal, identify patterns of risk or fraudulent behavior and take action to minimize it as early as possible, and detect patterns of behavior in operational systems and transportation that lead to failures, delays, and maintenance and take early action to minimize risks and costs. IBM® Operational Decision Manager is a decision management platform that provides capabilities that support both event-driven insight patterns, and business-rule-driven scenarios. It also can easily be used in combination with other IBM Analytics solutions, as the detailed examples will show. IBM Operational Decision Manager Advanced, along with complementary IBM software offerings that also provide capability for systems of insight, provides a way to deliver the greatest value to your customers and your business. IBM Operational Decision Manager Advanced brings together data from different sources to recognize meaningful trends and patterns. It empowers business users to define, manage, and automate repeatable operational decisions. As a result, organizations can create and shape customer-centric business moments. This IBM Redbooks® publication explains the key concepts of systems of insight and how to implement a system of insight solution with examples. It is intended for IT architects and professionals who are responsible for implementing a systems of insights solution requiring event-based context pattern detection and deterministic decision services to enhance other analytics solution components with IBM Operational Decision Manager Advanced.
Enabling Real-time Analytics on IBM z Systems Platform
Title | Enabling Real-time Analytics on IBM z Systems Platform PDF eBook |
Author | Lydia Parziale |
Publisher | IBM Redbooks |
Pages | 218 |
Release | 2016-08-08 |
Genre | Computers |
ISBN | 0738441864 |
Regarding online transaction processing (OLTP) workloads, IBM® z SystemsTM platform, with IBM DB2®, data sharing, Workload Manager (WLM), geoplex, and other high-end features, is the widely acknowledged leader. Most customers now integrate business analytics with OLTP by running, for example, scoring functions from transactional context for real-time analytics or by applying machine-learning algorithms on enterprise data that is kept on the mainframe. As a result, IBM adds investment so clients can keep the complete lifecycle for data analysis, modeling, and scoring on z Systems control in a cost-efficient way, keeping the qualities of services in availability, security, reliability that z Systems solutions offer. Because of the changed architecture and tighter integration, IBM has shown, in a customer proof-of-concept, that a particular client was able to achieve an orders-of-magnitude improvement in performance, allowing that client's data scientist to investigate the data in a more interactive process. Open technologies, such as Predictive Model Markup Language (PMML) can help customers update single components instead of being forced to replace everything at once. As a result, you have the possibility to combine your preferred tool for model generation (such as SAS Enterprise Miner or IBM SPSS® Modeler) with a different technology for model scoring (such as Zementis, a company focused on PMML scoring). IBM SPSS Modeler is a leading data mining workbench that can apply various algorithms in data preparation, cleansing, statistics, visualization, machine learning, and predictive analytics. It has over 20 years of experience and continued development, and is integrated with z Systems. With IBM DB2 Analytics Accelerator 5.1 and SPSS Modeler 17.1, the possibility exists to do the complete predictive model creation including data transformation within DB2 Analytics Accelerator. So, instead of moving the data to a distributed environment, algorithms can be pushed to the data, using cost-efficient DB2 Accelerator for the required resource-intensive operations. This IBM Redbooks® publication explains the overall z Systems architecture, how the components can be installed and customized, how the new IBM DB2 Analytics Accelerator loader can help efficient data loading for z Systems data and external data, how in-database transformation, in-database modeling, and in-transactional real-time scoring can be used, and what other related technologies are available. This book is intended for technical specialists and architects, and data scientists who want to use the technology on the z Systems platform. Most of the technologies described in this book require IBM DB2 for z/OS®. For acceleration of the data investigation, data transformation, and data modeling process, DB2 Analytics Accelerator is required. Most value can be achieved if most of the data already resides on z Systems platforms, although adding external data (like from social sources) poses no problem at all.
Accelerating Digital Transformation on Z Using Data Virtualization
Title | Accelerating Digital Transformation on Z Using Data Virtualization PDF eBook |
Author | Blanca Borden |
Publisher | IBM Redbooks |
Pages | 38 |
Release | 2021-04-13 |
Genre | Computers |
ISBN | 0738457299 |
This IBM® RedpaperTM publication introduces a new data virtualization capability that enables IBM z/OS® data to be combined with other enterprise data sources in real-time, which allows applications to access any live enterprise data anytime and use the power and efficiencies of the IBM Z® platform. Modern businesses need actionable and timely insight from current data. They cannot afford the time that is necessary to copy and transform data. They also cannot afford to secure and protect each copy of personally identifiable information and corporate intellectual property. Data virtualization enables direct connections to be established between multiple data sources and the applications that process the data. Transformations can be applied, in line, to enable real-time access to data, which opens up many new ways to gain business insight with less IT infrastructure necessary to achieve those goals. Data virtualization can become the backbone for advanced analytics and modern applications. The IBM Data Virtualization Manager for z/OS (DVM) can be used as a stand-alone product or as a utility that is used by other products. Its goal is to enable access to live mainframe transaction data and make it usable by any application. This enables customers to use the strengths of mainframe processing with new agile applications. Additionally, its modern development environment and code-generating capabilities enable any developer to update, access, and combine mainframe data easily by using modern APIs and languages. If data is the foundation for building new insights, IBM DVM is a key tool for providing easy, cost-efficient access to that foundation.
Apache Spark Implementation on IBM z/OS
Title | Apache Spark Implementation on IBM z/OS PDF eBook |
Author | Lydia Parziale |
Publisher | IBM Redbooks |
Pages | 144 |
Release | 2016-08-13 |
Genre | Computers |
ISBN | 0738414964 |
The term big data refers to extremely large sets of data that are analyzed to reveal insights, such as patterns, trends, and associations. The algorithms that analyze this data to provide these insights must extract value from a wide range of data sources, including business data and live, streaming, social media data. However, the real value of these insights comes from their timeliness. Rapid delivery of insights enables anyone (not only data scientists) to make effective decisions, applying deep intelligence to every enterprise application. Apache Spark is an integrated analytics framework and runtime to accelerate and simplify algorithm development, depoyment, and realization of business insight from analytics. Apache Spark on IBM® z/OS® puts the open source engine, augmented with unique differentiated features, built specifically for data science, where big data resides. This IBM Redbooks® publication describes the installation and configuration of IBM z/OS Platform for Apache Spark for field teams and clients. Additionally, it includes examples of business analytics scenarios.