Turbulence in the Divertor Region of Tokamak Edge Plasma

Turbulence in the Divertor Region of Tokamak Edge Plasma
Title Turbulence in the Divertor Region of Tokamak Edge Plasma PDF eBook
Author R. H. Cohen
Publisher
Pages
Release 2003
Genre
ISBN

Download Turbulence in the Divertor Region of Tokamak Edge Plasma Book in PDF, Epub and Kindle

Results of recent modeling of tokamak edge plasma with the turbulence code BOUT are presented. In previous studies with BOUT the background profiles of plasma density and temperature were set as flux surface functions. However in the divertor region of a tokamak the temperature is typically lower and density is higher than those at the mid-plane. To account for this in the present study a poloidal variation of background plasma density and temperature is included to provide a more realistic model. For poloidally uniform profiles of the background plasma the calculated turbulence amplitude peaks near outer mid-plane, while in the divertor region the amplitude is small. However, present simulations show that as the background plasma profiles become more poloidally non-uniform the amplitude of density fluctuations, {tilde n}{sub i}, starts peaking in the divertor. It is found that in the divertor region the amplitude of n{sub i} fluctuations grows approximately linearly with the local density of the background plasma, n{sub i0}, while the amplitude of T{sub e} and {phi} fluctuations is positively correlated with the local electron temperature, T{sub e0}. Correlation analysis shows that plasma turbulence is isolated by the x-points.

Simulation of Turbulence in the Divertor Region of Tokamak Edge Plasma

Simulation of Turbulence in the Divertor Region of Tokamak Edge Plasma
Title Simulation of Turbulence in the Divertor Region of Tokamak Edge Plasma PDF eBook
Author
Publisher
Pages 17
Release 2004
Genre
ISBN

Download Simulation of Turbulence in the Divertor Region of Tokamak Edge Plasma Book in PDF, Epub and Kindle

Results are presented for turbulence simulations with the fluid edge turbulence code BOUT [1]. The present study is focused on turbulence in the divertor leg region and on the role of the X-point in the structure of turbulence. Results of the present calculations indicate that the ballooning effects are important for the divertor fluctuations. The X-point shear leads to weak correlation of turbulence across the X-point regions, in particular for large toroidal wavenumber. For the saturated amplitudes of the divertor region turbulence it is found that amplitudes of density fluctuations are roughly proportional to the local density of the background plasma. The amplitudes of electron temperature and electric potential fluctuations are roughly proportional to the local electron temperature of the background plasma.

Numerical Modelling of Transport and Turbulence in Tokamak Edge Plasma with Divertor Configuration

Numerical Modelling of Transport and Turbulence in Tokamak Edge Plasma with Divertor Configuration
Title Numerical Modelling of Transport and Turbulence in Tokamak Edge Plasma with Divertor Configuration PDF eBook
Author Davide Galassi
Publisher
Pages 0
Release 2017
Genre
ISBN

Download Numerical Modelling of Transport and Turbulence in Tokamak Edge Plasma with Divertor Configuration Book in PDF, Epub and Kindle

Nuclear fusion could offer a new source of stable, non-CO2 emitting energy. Today, tokamaks offer the best performance by confining a high temperature plasma by means of a magnetic field. Two of the major technological challenges for the operation of tokamaks are the power extraction and the confinement of plasma over long periods. These issues are associated with the transport of particles and heat, which is determined by turbulence, from the central plasma to the edge zone. In this thesis, we model turbulence in the edge plasma. We study in particular the divertor configuration, in which the central plasma is isolated from the walls by means of an additional magnetic field. This complex magnetic geometry is simulated with the fluid turbulence code TOKAM3X, developed in collaboration between the IRFM at CEA and the M2P2 laboratory of the University of Aix-Marseille.A comparison with simulations in simplified geometry shows a similar intermittent nature of turbulence. Nevertheless, the amplitude of the fluctuations, which has a maximum at the equatorial plane, is greatly reduced near the X-point, where the field lines become purely toroidal, in agreement with the recent experimental data. The simulations in divertor configuration show a significantly higher confinement than in circular geometry. A partial inhibition of the radial transport of particles at the X-point contributes to this improvement. This mechanism is potentially important for understanding the transition from low confinement mode to high confinement mode, the intended operational mode for ITER.

Washington Journal

Washington Journal
Title Washington Journal PDF eBook
Author
Publisher
Pages 21
Release
Genre Cleveland (Ohio)
ISBN

Download Washington Journal Book in PDF, Epub and Kindle

Journal of a trip to a GAR encampment in Washington, DC. Very detailed description of his trip to the White House. Includes description of a day spent sight seeing in Cleveland, OH on the return trip to Michigan.

Boundary Plasma Turbulence Simulations for Tokamaks

Boundary Plasma Turbulence Simulations for Tokamaks
Title Boundary Plasma Turbulence Simulations for Tokamaks PDF eBook
Author
Publisher
Pages 41
Release 2008
Genre
ISBN

Download Boundary Plasma Turbulence Simulations for Tokamaks Book in PDF, Epub and Kindle

The boundary plasma turbulence code BOUT models tokamak boundary-plasma turbulence in a realistic divertor geometry using modified Braginskii equations for plasma vorticity, density (ni), electron and ion temperature (T{sub e}; T{sub i}) and parallel momenta. The BOUT code solves for the plasma fluid equations in a three dimensional (3D) toroidal segment (or a toroidal wedge), including the region somewhat inside the separatrix and extending into the scrape-off layer; the private flux region is also included. In this paper, a description is given of the sophisticated physical models, innovative numerical algorithms, and modern software design used to simulate edge-plasmas in magnetic fusion energy devices. The BOUT code's unique capabilities and functionality are exemplified via simulations of the impact of plasma density on tokamak edge turbulence and blob dynamics.

Simulation of Plasma Fluxes to Material Surfaces with Self-consistent Edge Turbulence and Transport for Tokamaks

Simulation of Plasma Fluxes to Material Surfaces with Self-consistent Edge Turbulence and Transport for Tokamaks
Title Simulation of Plasma Fluxes to Material Surfaces with Self-consistent Edge Turbulence and Transport for Tokamaks PDF eBook
Author R. Cohen
Publisher
Pages 16
Release 2004
Genre
ISBN

Download Simulation of Plasma Fluxes to Material Surfaces with Self-consistent Edge Turbulence and Transport for Tokamaks Book in PDF, Epub and Kindle

The edge-plasma profiles and fluxes to the divertor and walls of a divertor tokamak with a magnetic X-point are simulated by coupling a 2D transport code (UEDGE) and a 3D turbulence code (BOUT). An relaxed iterative coupling scheme is used where each code is run on its characteristic time scale, resulting in a statistical steady state. Plasma variables of density, parallel velocity, and separate ion and electron temperatures are included, together with a fluid neutral model for recycling neutrals at material surfaces. Results for the DIII-D tokamak parameters show that the turbulence is preferentially excited in the outer radial region of the edge where magnetic curvature is destabilizing and that substantial plasma particle flux is transported to the main chamber walls. These results are qualitatively consistent with some experimental observations. The coupled transport/turbulence simulation technique provides a strategy to understanding edge-plasma physics in more detailed than previously available and to significantly enhance the realism of predictions of the performance of future devices.

Simulation of Plasma Fluxes to Material Surfaces with Self-Consistent Edge Turbulence and Transport for Tokamaks

Simulation of Plasma Fluxes to Material Surfaces with Self-Consistent Edge Turbulence and Transport for Tokamaks
Title Simulation of Plasma Fluxes to Material Surfaces with Self-Consistent Edge Turbulence and Transport for Tokamaks PDF eBook
Author
Publisher
Pages 13
Release 2004
Genre
ISBN

Download Simulation of Plasma Fluxes to Material Surfaces with Self-Consistent Edge Turbulence and Transport for Tokamaks Book in PDF, Epub and Kindle

The edge-plasma profiles and fluxes to the divertor and walls of a divertor tokamak with a magnetic X-point are simulated by coupling a 2D transport code (UEDGE) and a 3D turbulence code (BOUT). An relaxed iterative coupling scheme is used where each code is run on its characteristic time scale, resulting in a statistical steady state. Plasma variables of density, parallel velocity, and separate ion and electron temperatures are included, together with a fluid neutral model for recycling neutrals at material surfaces. Results for the DIII-D tokamak parameters show that the turbulence is preferentially excited in the outer radial region of the edge where magnetic curvature is destabilizing and that substantial plasma particle flux is transported to the main chamber walls. These results are qualitatively consistent with some experimental observations. The coupled transport/turbulence simulation technique provides a strategy to understanding edge-plasma physics in more detailed than previously available and to significantly enhance the realism of predictions of the performance of future devices.