Triangulated Categories of Mixed Motives

Triangulated Categories of Mixed Motives
Title Triangulated Categories of Mixed Motives PDF eBook
Author Denis-Charles Cisinski
Publisher Springer Nature
Pages 442
Release 2019-11-09
Genre Mathematics
ISBN 303033242X

Download Triangulated Categories of Mixed Motives Book in PDF, Epub and Kindle

The primary aim of this monograph is to achieve part of Beilinson’s program on mixed motives using Voevodsky’s theories of A1-homotopy and motivic complexes. Historically, this book is the first to give a complete construction of a triangulated category of mixed motives with rational coefficients satisfying the full Grothendieck six functors formalism as well as fulfilling Beilinson’s program, in particular the interpretation of rational higher Chow groups as extension groups. Apart from Voevodsky’s entire work and Grothendieck’s SGA4, our main sources are Gabber’s work on étale cohomology and Ayoub’s solution to Voevodsky’s cross functors theory. We also thoroughly develop the theory of motivic complexes with integral coefficients over general bases, along the lines of Suslin and Voevodsky. Besides this achievement, this volume provides a complete toolkit for the study of systems of coefficients satisfying Grothendieck’ six functors formalism, including Grothendieck-Verdier duality. It gives a systematic account of cohomological descent theory with an emphasis on h-descent. It formalizes morphisms of coefficient systems with a view towards realization functors and comparison results. The latter allows to understand the polymorphic nature of rational mixed motives. They can be characterized by one of the following properties: existence of transfers, universality of rational algebraic K-theory, h-descent, étale descent, orientation theory. This monograph is a longstanding research work of the two authors. The first three parts are written in a self-contained manner and could be accessible to graduate students with a background in algebraic geometry and homotopy theory. It is designed to be a reference work and could also be useful outside motivic homotopy theory. The last part, containing the most innovative results, assumes some knowledge of motivic homotopy theory, although precise statements and references are given.

Mixed Motives

Mixed Motives
Title Mixed Motives PDF eBook
Author Marc Levine
Publisher American Mathematical Soc.
Pages 529
Release 1998
Genre Mathematics
ISBN 0821807854

Download Mixed Motives Book in PDF, Epub and Kindle

This book combines foundational constructions in the theory of motives and results relating motivic cohomology to more explicit constructions. Prerequisite for understanding the work is a basic background in algebraic geometry. The author constructs and describes a triangulated category of mixed motives over an arbitrary base scheme. Most of the classical constructions of cohomology are described in the motivic setting, including Chern classes from higher $K$-theory, push-forward for proper maps, Riemann-Roch, duality, as well as an associated motivic homology, Borel-Moore homology and cohomology with compact supports.

Motivic Homotopy Theory

Motivic Homotopy Theory
Title Motivic Homotopy Theory PDF eBook
Author Bjorn Ian Dundas
Publisher Springer Science & Business Media
Pages 228
Release 2007-07-11
Genre Mathematics
ISBN 3540458972

Download Motivic Homotopy Theory Book in PDF, Epub and Kindle

This book is based on lectures given at a summer school on motivic homotopy theory at the Sophus Lie Centre in Nordfjordeid, Norway, in August 2002. Aimed at graduate students in algebraic topology and algebraic geometry, it contains background material from both of these fields, as well as the foundations of motivic homotopy theory. It will serve as a good introduction as well as a convenient reference for a broad group of mathematicians to this important and fascinating new subject. Vladimir Voevodsky is one of the founders of the theory and received the Fields medal for his work, and the other authors have all done important work in the subject.

Lecture Notes on Motivic Cohomology

Lecture Notes on Motivic Cohomology
Title Lecture Notes on Motivic Cohomology PDF eBook
Author Carlo Mazza
Publisher American Mathematical Soc.
Pages 240
Release 2006
Genre Mathematics
ISBN 9780821838471

Download Lecture Notes on Motivic Cohomology Book in PDF, Epub and Kindle

The notion of a motive is an elusive one, like its namesake "the motif" of Cezanne's impressionist method of painting. Its existence was first suggested by Grothendieck in 1964 as the underlying structure behind the myriad cohomology theories in Algebraic Geometry. We now know that there is a triangulated theory of motives, discovered by Vladimir Voevodsky, which suffices for the development of a satisfactory Motivic Cohomology theory. However, the existence of motives themselves remains conjectural. This book provides an account of the triangulated theory of motives. Its purpose is to introduce Motivic Cohomology, to develop its main properties, and finally to relate it to other known invariants of algebraic varieties and rings such as Milnor K-theory, etale cohomology, and Chow groups. The book is divided into lectures, grouped in six parts. The first part presents the definition of Motivic Cohomology, based upon the notion of presheaves with transfers. Some elementary comparison theorems are given in this part. The theory of (etale, Nisnevich, and Zariski) sheaves with transfers is developed in parts two, three, and six, respectively. The theoretical core of the book is the fourth part, presenting the triangulated category of motives. Finally, the comparison with higher Chow groups is developed in part five. The lecture notes format is designed for the book to be read by an advanced graduate student or an expert in a related field. The lectures roughly correspond to one-hour lectures given by Voevodsky during the course he gave at the Institute for Advanced Study in Princeton on this subject in 1999-2000. In addition, many of the original proofs have been simplified and improved so that this book will also be a useful tool for research mathematicians. Information for our distributors: Titles in this series are copublished with the Clay Mathematics Institute (Cambridge, MA).

Noncommutative Motives

Noncommutative Motives
Title Noncommutative Motives PDF eBook
Author Gonçalo Tabuada
Publisher American Mathematical Soc.
Pages 127
Release 2015-09-21
Genre Mathematics
ISBN 1470423979

Download Noncommutative Motives Book in PDF, Epub and Kindle

The theory of motives began in the early 1960s when Grothendieck envisioned the existence of a "universal cohomology theory of algebraic varieties". The theory of noncommutative motives is more recent. It began in the 1980s when the Moscow school (Beilinson, Bondal, Kapranov, Manin, and others) began the study of algebraic varieties via their derived categories of coherent sheaves, and continued in the 2000s when Kontsevich conjectured the existence of a "universal invariant of noncommutative algebraic varieties". This book, prefaced by Yuri I. Manin, gives a rigorous overview of some of the main advances in the theory of noncommutative motives. It is divided into three main parts. The first part, which is of independent interest, is devoted to the study of DG categories from a homotopical viewpoint. The second part, written with an emphasis on examples and applications, covers the theory of noncommutative pure motives, noncommutative standard conjectures, noncommutative motivic Galois groups, and also the relations between these notions and their commutative counterparts. The last part is devoted to the theory of noncommutative mixed motives. The rigorous formalization of this latter theory requires the language of Grothendieck derivators, which, for the reader's convenience, is revised in a brief appendix.

Periods and Nori Motives

Periods and Nori Motives
Title Periods and Nori Motives PDF eBook
Author Annette Huber
Publisher Springer
Pages 381
Release 2017-03-08
Genre Mathematics
ISBN 3319509268

Download Periods and Nori Motives Book in PDF, Epub and Kindle

This book casts the theory of periods of algebraic varieties in the natural setting of Madhav Nori’s abelian category of mixed motives. It develops Nori’s approach to mixed motives from scratch, thereby filling an important gap in the literature, and then explains the connection of mixed motives to periods, including a detailed account of the theory of period numbers in the sense of Kontsevich-Zagier and their structural properties. Period numbers are central to number theory and algebraic geometry, and also play an important role in other fields such as mathematical physics. There are long-standing conjectures about their transcendence properties, best understood in the language of cohomology of algebraic varieties or, more generally, motives. Readers of this book will discover that Nori’s unconditional construction of an abelian category of motives (over fields embeddable into the complex numbers) is particularly well suited for this purpose. Notably, Kontsevich's formal period algebra represents a torsor under the motivic Galois group in Nori's sense, and the period conjecture of Kontsevich and Zagier can be recast in this setting. Periods and Nori Motives is highly informative and will appeal to graduate students interested in algebraic geometry and number theory as well as researchers working in related fields. Containing relevant background material on topics such as singular cohomology, algebraic de Rham cohomology, diagram categories and rigid tensor categories, as well as many interesting examples, the overall presentation of this book is self-contained.

Algebraic Cycles and Motives: Volume 1

Algebraic Cycles and Motives: Volume 1
Title Algebraic Cycles and Motives: Volume 1 PDF eBook
Author Jan Nagel
Publisher Cambridge University Press
Pages 293
Release 2007-05-03
Genre Mathematics
ISBN 0521701740

Download Algebraic Cycles and Motives: Volume 1 Book in PDF, Epub and Kindle

This 2007 book is a self-contained account of the subject of algebraic cycles and motives.