Transport Phenomena In Combustion
Title | Transport Phenomena In Combustion PDF eBook |
Author | SH Chan |
Publisher | Taylor & Francis |
Pages | 1862 |
Release | 2024-09-06 |
Genre | Technology & Engineering |
ISBN | 1351407007 |
This two-volume set presents the proceedings from the 8th International Symposium on Transport Phenomena in Combustion. There are more than 150 chapters that provide an extensive review of topics such as complete numerical simulation of combustion and heat transfer in furnaces and boilers, the interaction of combustion and heat transfer in porous media for low emission, high efficiency applications, industrial combustion technology, experimental and diagnostic methods and active combustion control, and fire research, internal combustion engine, Nox and soot emission.
Transport Phenomena in Fires
Title | Transport Phenomena in Fires PDF eBook |
Author | Mohammad Faghri |
Publisher | WIT Press |
Pages | 497 |
Release | 2008 |
Genre | Technology & Engineering |
ISBN | 1845641604 |
Controlled fires are beneficial for the generation of heat and power while uncontrolled fires, like fire incidents and wildfires, are detrimental and can cause enormous material damage and human suffering. This edited book presents the state-of-the-art of modeling and numerical simulation of the important transport phenomena in fires. It describes how computational procedures can be used in analysis and design of fire protection and fire safety. Computational fluid dynamics, turbulence modeling, combustion, soot formation, thermal radiation modeling are demonstrated and applied to pool fires, flame spread, wildfires, fires in buildings and other examples.
Transport Processes in Chemically Reacting Flow Systems
Title | Transport Processes in Chemically Reacting Flow Systems PDF eBook |
Author | Daniel E. Rosner |
Publisher | Butterworth-Heinemann |
Pages | 571 |
Release | 2013-10-22 |
Genre | Technology & Engineering |
ISBN | 1483162680 |
Transport Processes in Chemically Reacting Flow Systems discusses the role, in chemically reacting flow systems, of transport processes—particularly the transport of momentum, energy, and (chemical species) mass in fluids (gases and liquids). The principles developed and often illustrated here for combustion systems are important not only for the rational design and development of engineering equipment (e.g., chemical reactors, heat exchangers, mass exchangers) but also for scientific research involving coupled transport processes and chemical reaction in flow systems. The book begins with an introduction to transport processes in chemically reactive systems. Separate chapters cover momentum, energy, and mass transport. These chapters develop, state, and exploit useful quantitative ""analogies"" between these transport phenomena, including interrelationships that remain valid even in the presence of homogeneous or heterogeneous chemical reactions. A separate chapter covers the use of transport theory in the systematization and generalization of experimental data on chemically reacting systems. The principles and methods discussed are then applied to the preliminary design of a heat exchanger for extracting power from the products of combustion in a stationary (fossil-fuel-fired) power plant. The book has been written in such a way as to be accessible to students and practicing scientists whose background has until now been confined to physical chemistry, classical physics, and/or applied mathematics.
Rotary Kilns
Title | Rotary Kilns PDF eBook |
Author | Akwasi A. Boateng |
Publisher | Butterworth-Heinemann |
Pages | 392 |
Release | 2015-11-13 |
Genre | Technology & Engineering |
ISBN | 0128038535 |
Rotary Kilns—rotating industrial drying ovens—are used for a wide variety of applications including processing raw minerals and feedstocks as well as heat-treating hazardous wastes. They are particularly critical in the manufacture of Portland cement. Their design and operation is critical to their efficient usage, which if done incorrectly can result in improperly treated materials and excessive, high fuel costs. This professional reference book will be the first comprehensive book in many years that treats all engineering aspects of rotary kilns, including a thorough grounding in the thermal and fluid principles involved in their operation, as well as how to properly design an engineering process that uses rotary kilns. This new edition contains an updated CFD section with inclusion of recent case studies and in line with recent developments covers pyrolysis processes, torrefaction of biomass, application of rotary kilns in C02 capture and information on using rotary kilns as incinerators for hydrocarbons. - Provides essential information on fluid flow, granular flow, mixing and segregation, and aerodynamics during turbulent mixing and recirculation - Gives guidance on which fuels to choose, including options such as natural gas versus coal-fired rotary kilns - Covers principles of combustion and flame control, heat transfer and heating and material balances - New edition contains information on pyrolysis processes with low temperatures and torrefaction of biomass. It also covers calcination of petcoke, how rotary kilns are used as incinerators for chlorinated hydrocarbons. - Includes updated material on CFD simulation of kiln gas and solids flow with a selection of recent case studies.
Introduction to Catalytic Combustion
Title | Introduction to Catalytic Combustion PDF eBook |
Author | R.E. Hayes |
Publisher | Routledge |
Pages | 690 |
Release | 2021-10-25 |
Genre | Science |
ISBN | 1351437216 |
In a clear and concise manner, this book explains how to apply concepts in chemical reaction engineering and transport phenomena to the design of catalytic combustion systems. Although there are many textbooks on the subject of chemical reaction engineering, catalytic combustion is mentioned either only briefly or not at all. The authors have chosen three examples where catalytic combustion is utilized as a primary combustion process and natural gas is used as a fuel - stationary gas turbines, process fluid heaters, and radiant heaters; these cover much of the area where research is currently most active. In each of these there are clear environmental benefits to be gained illustrating catalytic combustion as a "cleaner primary combustion process" . The dominant heat transfer processes in each of the applications are different, as are the support systems, flow geometrics and operating conditions.
Fundamentals of Combustion Engineering
Title | Fundamentals of Combustion Engineering PDF eBook |
Author | Achintya Mukhopadhyay |
Publisher | CRC Press |
Pages | 236 |
Release | 2019-02-22 |
Genre | Science |
ISBN | 1482233339 |
This book is an introductory text on fundamental aspects of combustion including thermodynamics, heat and mass transfer and chemical kinetics which are used to systematically derive the basic concepts of combustion. Apart from the fundamental aspects, many of the emerging topics in the field like microscale combustion, combustion dynamics, oxy-fuel combustion and combustion diagnostics are also covered in the book. This would help the beginners in the subject to get initiated to the state of the art topics. Key Features: Coverage of the essential aspects of combustion engineering suitable for both beginners and practicing professionals Topics like entropy generation, microscale combustion, combustion diagnostics, second law-based analysis exclusive to the title Balanced treatment of thermodynamics, transport phenomena and chemical kinetics Discussion on state of the art techniques in combustion diagnostics Illustrates combustion of gaseous, liquid and solid fuels along with emission of pollutants and greenhouse gases
Transport Phenomena in Multiphase Systems
Title | Transport Phenomena in Multiphase Systems PDF eBook |
Author | Amir Faghri |
Publisher | Elsevier |
Pages | 1060 |
Release | 2006-05-25 |
Genre | Technology & Engineering |
ISBN | 0080547680 |
Engineering students in a wide variety of engineering disciplines from mechanical and chemical to biomedical and materials engineering must master the principles of transport phenomena as an essential tool in analyzing and designing any system or systems wherein momentum, heat and mass are transferred. This textbook was developed to address that need, with a clear presentation of the fundamentals, ample problem sets to reinforce that knowledge, and tangible examples of how this knowledge is put to use in engineering design. Professional engineers, too, will find this book invaluable as reference for everything from heat exchanger design to chemical processing system design and more. * Develops an understanding of the thermal and physical behavior of multiphase systems with phase change, including microscale and porosity, for practical applications in heat transfer, bioengineering, materials science, nuclear engineering, environmental engineering, process engineering, biotechnology and nanotechnology * Brings all three forms of phase change, i.e., liquid vapor, solid liquid and solid vapor, into one volume and describes them from one perspective in the context of fundamental treatment * Presents the generalized integral and differential transport phenomena equations for multi-component multiphase systems in local instance as well as averaging formulations. The molecular approach is also discussed with the connection between microscopic and molecular approaches * Presents basic principles of analyzing transport phenomena in multiphase systems with emphasis on melting, solidification, sublimation, vapor deposition, condensation, evaporation, boiling and two-phase flow heat transfer at the micro and macro levels * Solid/liquid/vapor interfacial phenomena, including the concepts of surface tension, wetting phenomena, disjoining pressure, contact angle, thin films and capillary phenomena, including interfacial balances for mass, species, momentum, and energy for multi-component and multiphase interfaces are discussed * Ample examples and end-of-chapter problems, with Solutions Manual and PowerPoint presentation available to the instructors