Transport Equations and Multi-D Hyperbolic Conservation Laws
Title | Transport Equations and Multi-D Hyperbolic Conservation Laws PDF eBook |
Author | Luigi Ambrosio |
Publisher | Springer Science & Business Media |
Pages | 141 |
Release | 2008-02-17 |
Genre | Mathematics |
ISBN | 3540767819 |
The theory of nonlinear hyperbolic equations in several space dimensions has recently obtained remarkable achievements. This volume provides an up-to-date overview of the status and perspectives of two areas of research in PDEs, related to hyperbolic conservation laws. The captivating volume contains surveys of recent deep results and provides an overview of further developments and related open problems. Readers should have basic knowledge of PDE and measure theory.
Numerical Methods for Advection--diffusion Problems
Title | Numerical Methods for Advection--diffusion Problems PDF eBook |
Author | Cornelis Boudewijn Vreugdenhil |
Publisher | |
Pages | 396 |
Release | 1993 |
Genre | Science |
ISBN |
Finite Volume Methods for Hyperbolic Problems
Title | Finite Volume Methods for Hyperbolic Problems PDF eBook |
Author | Randall J. LeVeque |
Publisher | Cambridge University Press |
Pages | 582 |
Release | 2002-08-26 |
Genre | Mathematics |
ISBN | 1139434187 |
This book, first published in 2002, contains an introduction to hyperbolic partial differential equations and a powerful class of numerical methods for approximating their solution, including both linear problems and nonlinear conservation laws. These equations describe a wide range of wave propagation and transport phenomena arising in nearly every scientific and engineering discipline. Several applications are described in a self-contained manner, along with much of the mathematical theory of hyperbolic problems. High-resolution versions of Godunov's method are developed, in which Riemann problems are solved to determine the local wave structure and limiters are then applied to eliminate numerical oscillations. These methods were originally designed to capture shock waves accurately, but are also useful tools for studying linear wave-propagation problems, particularly in heterogenous material. The methods studied are implemented in the CLAWPACK software package and source code for all the examples presented can be found on the web, along with animations of many of the simulations. This provides an excellent learning environment for understanding wave propagation phenomena and finite volume methods.
Nonlinear Conservation Laws and Applications
Title | Nonlinear Conservation Laws and Applications PDF eBook |
Author | Alberto Bressan |
Publisher | Springer Science & Business Media |
Pages | 487 |
Release | 2011-04-19 |
Genre | Mathematics |
ISBN | 1441995544 |
This volume contains the proceedings of the Summer Program on Nonlinear Conservation Laws and Applications held at the IMA on July 13--31, 2009. Hyperbolic conservation laws is a classical subject, which has experienced vigorous growth in recent years. The present collection provides a timely survey of the state of the art in this exciting field, and a comprehensive outlook on open problems. Contributions of more theoretical nature cover the following topics: global existence and uniqueness theory of one-dimensional systems, multidimensional conservation laws in several space variables and approximations of their solutions, mathematical analysis of fluid motion, stability and dynamics of viscous shock waves, singular limits for viscous systems, basic principles in the modeling of turbulent mixing, transonic flows past an obstacle and a fluid dynamic approach for isometric embedding in geometry, models of nonlinear elasticity, the Monge problem, and transport equations with rough coefficients. In addition, there are a number of papers devoted to applications. These include: models of blood flow, self-gravitating compressible fluids, granular flow, charge transport in fluids, and the modeling and control of traffic flow on networks.
Numerical Methods for Conservation Laws
Title | Numerical Methods for Conservation Laws PDF eBook |
Author | LEVEQUE |
Publisher | Birkhäuser |
Pages | 221 |
Release | 2013-11-11 |
Genre | Science |
ISBN | 3034851162 |
These notes developed from a course on the numerical solution of conservation laws first taught at the University of Washington in the fall of 1988 and then at ETH during the following spring. The overall emphasis is on studying the mathematical tools that are essential in de veloping, analyzing, and successfully using numerical methods for nonlinear systems of conservation laws, particularly for problems involving shock waves. A reasonable un derstanding of the mathematical structure of these equations and their solutions is first required, and Part I of these notes deals with this theory. Part II deals more directly with numerical methods, again with the emphasis on general tools that are of broad use. I have stressed the underlying ideas used in various classes of methods rather than present ing the most sophisticated methods in great detail. My aim was to provide a sufficient background that students could then approach the current research literature with the necessary tools and understanding. vVithout the wonders of TeX and LaTeX, these notes would never have been put together. The professional-looking results perhaps obscure the fact that these are indeed lecture notes. Some sections have been reworked several times by now, but others are still preliminary. I can only hope that the errors are not too blatant. Moreover, the breadth and depth of coverage was limited by the length of these courses, and some parts are rather sketchy.
Hyperbolic Systems of Conservation Laws
Title | Hyperbolic Systems of Conservation Laws PDF eBook |
Author | Philippe G. LeFloch |
Publisher | Birkhäuser |
Pages | 301 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 3034881509 |
This book examines the well-posedness theory for nonlinear hyperbolic systems of conservation laws, recently completed by the author together with his collaborators. It covers the existence, uniqueness, and continuous dependence of classical entropy solutions. It also introduces the reader to the developing theory of nonclassical (undercompressive) entropy solutions. The systems of partial differential equations under consideration arise in many areas of continuum physics.
Handbook of Differential Equations: Evolutionary Equations
Title | Handbook of Differential Equations: Evolutionary Equations PDF eBook |
Author | C.M. Dafermos |
Publisher | Elsevier |
Pages | 677 |
Release | 2005-10-05 |
Genre | Mathematics |
ISBN | 0080461387 |
The aim of this Handbook is to acquaint the reader with the current status of the theory of evolutionary partial differential equations, and with some of its applications. Evolutionary partial differential equations made their first appearance in the 18th century, in the endeavor to understand the motion of fluids and other continuous media. The active research effort over the span of two centuries, combined with the wide variety of physical phenomena that had to be explained, has resulted in an enormous body of literature. Any attempt to produce a comprehensive survey would be futile. The aim here is to collect review articles, written by leading experts, which will highlight the present and expected future directions of development of the field. The emphasis will be on nonlinear equations, which pose the most challenging problems today.. Volume I of this Handbook does focus on the abstract theory of evolutionary equations. . Volume 2 considers more concrete problems relating to specific applications. . Together they provide a panorama of this amazingly complex and rapidly developing branch of mathematics.