Spacecraft Trajectory Optimization
Title | Spacecraft Trajectory Optimization PDF eBook |
Author | Bruce A. Conway |
Publisher | Cambridge University Press |
Pages | 313 |
Release | 2010-08-23 |
Genre | Technology & Engineering |
ISBN | 113949077X |
This is a long-overdue volume dedicated to space trajectory optimization. Interest in the subject has grown, as space missions of increasing levels of sophistication, complexity, and scientific return - hardly imaginable in the 1960s - have been designed and flown. Although the basic tools of optimization theory remain an accepted canon, there has been a revolution in the manner in which they are applied and in the development of numerical optimization. This volume purposely includes a variety of both analytical and numerical approaches to trajectory optimization. The choice of authors has been guided by the editor's intention to assemble the most expert and active researchers in the various specialities presented. The authors were given considerable freedom to choose their subjects, and although this may yield a somewhat eclectic volume, it also yields chapters written with palpable enthusiasm and relevance to contemporary problems.
Design of Trajectory Optimization Approach for Space Maneuver Vehicle Skip Entry Problems
Title | Design of Trajectory Optimization Approach for Space Maneuver Vehicle Skip Entry Problems PDF eBook |
Author | Runqi Chai |
Publisher | Springer |
Pages | 216 |
Release | 2019-07-30 |
Genre | Technology & Engineering |
ISBN | 9811398453 |
This book explores the design of optimal trajectories for space maneuver vehicles (SMVs) using optimal control-based techniques. It begins with a comprehensive introduction to and overview of three main approaches to trajectory optimization, and subsequently focuses on the design of a novel hybrid optimization strategy that combines an initial guess generator with an improved gradient-based inner optimizer. Further, it highlights the development of multi-objective spacecraft trajectory optimization problems, with a particular focus on multi-objective transcription methods and multi-objective evolutionary algorithms. In its final sections, the book studies spacecraft flight scenarios with noise-perturbed dynamics and probabilistic constraints, and designs and validates new chance-constrained optimal control frameworks. The comprehensive and systematic treatment of practical issues in spacecraft trajectory optimization is one of the book’s major features, making it particularly suited for readers who are seeking practical solutions in spacecraft trajectory optimization. It offers a valuable asset for researchers, engineers, and graduate students in GNC systems, engineering optimization, applied optimal control theory, etc.
Advanced Trajectory Optimization, Guidance and Control Strategies for Aerospace Vehicles
Title | Advanced Trajectory Optimization, Guidance and Control Strategies for Aerospace Vehicles PDF eBook |
Author | Runqi Chai |
Publisher | Springer Nature |
Pages | 272 |
Release | 2023-10-29 |
Genre | Technology & Engineering |
ISBN | 9819943116 |
This book focuses on the design and application of advanced trajectory optimization and guidance and control (G&C) techniques for aerospace vehicles. Part I of the book focuses on the introduction of constrained aerospace vehicle trajectory optimization problems, with particular emphasis on the design of high-fidelity trajectory optimization methods, heuristic optimization-based strategies, and fast convexification-based algorithms. In Part II, various optimization theory/artificial intelligence (AI)-based methods are constructed and presented, including dynamic programming-based methods, model predictive control-based methods, and deep neural network-based algorithms. Key aspects of the application of these approaches, such as their main advantages and inherent challenges, are detailed and discussed. Some practical implementation considerations are then summarized, together with a number of future research topics. The comprehensive and systematic treatment of practical issues in aerospace trajectory optimization and guidance and control problems is one of the main features of the book, which is particularly suitable for readers interested in learning practical solutions in aerospace trajectory optimization and guidance and control. The book is useful to researchers, engineers, and graduate students in the fields of G&C systems, engineering optimization, applied optimal control theory, etc.
An Introduction to the Mathematics and Methods of Astrodynamics
Title | An Introduction to the Mathematics and Methods of Astrodynamics PDF eBook |
Author | Richard H. Battin |
Publisher | AIAA |
Pages | 840 |
Release | 1999 |
Genre | Astrodynamics |
ISBN | 9781600860263 |
2021 21st International Conference on Control, Automation and Systems (ICCAS).
Title | 2021 21st International Conference on Control, Automation and Systems (ICCAS). PDF eBook |
Author | |
Publisher | |
Pages | |
Release | 2021 |
Genre | |
ISBN | 9788993215212 |
Predictive Control for Linear and Hybrid Systems
Title | Predictive Control for Linear and Hybrid Systems PDF eBook |
Author | Francesco Borrelli |
Publisher | Cambridge University Press |
Pages | 447 |
Release | 2017-06-22 |
Genre | Mathematics |
ISBN | 1107016886 |
With a simple approach that includes real-time applications and algorithms, this book covers the theory of model predictive control (MPC).
Logic and Integer Programming
Title | Logic and Integer Programming PDF eBook |
Author | H. Paul Williams |
Publisher | Springer Science & Business Media |
Pages | 167 |
Release | 2009-04-09 |
Genre | Computers |
ISBN | 0387922806 |
Paul Williams, a leading authority on modeling in integer programming, has written a concise, readable introduction to the science and art of using modeling in logic for integer programming. Written for graduate and postgraduate students, as well as academics and practitioners, the book is divided into four chapters that all avoid the typical format of definitions, theorems and proofs and instead introduce concepts and results within the text through examples. References are given at the end of each chapter to the more mathematical papers and texts on the subject, and exercises are included to reinforce and expand on the material in the chapter. Methods of solving with both logic and IP are given and their connections are described. Applications in diverse fields are discussed, and Williams shows how IP models can be expressed as satisfiability problems and solved as such.