Stable Adaptive Control and Estimation for Nonlinear Systems
Title | Stable Adaptive Control and Estimation for Nonlinear Systems PDF eBook |
Author | Jeffrey T. Spooner |
Publisher | John Wiley & Sons |
Pages | 564 |
Release | 2004-04-07 |
Genre | Science |
ISBN | 0471460974 |
Thema dieses Buches ist die Anwendung neuronaler Netze und Fuzzy-Logic-Methoden zur Identifikation und Steuerung nichtlinear-dynamischer Systeme. Dabei werden fortgeschrittene Konzepte der herkömmlichen Steuerungstheorie mit den intuitiven Eigenschaften intelligenter Systeme kombiniert, um praxisrelevante Steuerungsaufgaben zu lösen. Die Autoren bieten viel Hintergrundmaterial; ausgearbeitete Beispiele und Übungsaufgaben helfen Studenten und Praktikern beim Vertiefen des Stoffes. Lösungen zu den Aufgaben sowie MATLAB-Codebeispiele sind ebenfalls enthalten.
Stable Adaptive Neural Network Control
Title | Stable Adaptive Neural Network Control PDF eBook |
Author | S.S. Ge |
Publisher | Springer Science & Business Media |
Pages | 296 |
Release | 2013-03-09 |
Genre | Science |
ISBN | 1475765770 |
Recent years have seen a rapid development of neural network control tech niques and their successful applications. Numerous simulation studies and actual industrial implementations show that artificial neural network is a good candidate for function approximation and control system design in solving the control problems of complex nonlinear systems in the presence of different kinds of uncertainties. Many control approaches/methods, reporting inventions and control applications within the fields of adaptive control, neural control and fuzzy systems, have been published in various books, journals and conference proceedings. In spite of these remarkable advances in neural control field, due to the complexity of nonlinear systems, the present research on adaptive neural control is still focused on the development of fundamental methodologies. From a theoretical viewpoint, there is, in general, lack of a firmly mathematical basis in stability, robustness, and performance analysis of neural network adaptive control systems. This book is motivated by the need for systematic design approaches for stable adaptive control using approximation-based techniques. The main objec tives of the book are to develop stable adaptive neural control strategies, and to perform transient performance analysis of the resulted neural control systems analytically. Other linear-in-the-parameter function approximators can replace the linear-in-the-parameter neural networks in the controllers presented in the book without any difficulty, which include polynomials, splines, fuzzy systems, wavelet networks, among others. Stability is one of the most important issues being concerned if an adaptive neural network controller is to be used in practical applications.
Nonlinear and Adaptive Control with Applications
Title | Nonlinear and Adaptive Control with Applications PDF eBook |
Author | Alessandro Astolfi |
Publisher | Springer Science & Business Media |
Pages | 302 |
Release | 2007-12-06 |
Genre | Technology & Engineering |
ISBN | 1848000669 |
The authors here provide a detailed treatment of the design of robust adaptive controllers for nonlinear systems with uncertainties. They employ a new tool based on the ideas of system immersion and manifold invariance. New algorithms are delivered for the construction of robust asymptotically-stabilizing and adaptive control laws for nonlinear systems. The methods proposed lead to modular schemes that are easier to tune than their counterparts obtained from Lyapunov redesign.
Nonlinear and Adaptive Control Systems
Title | Nonlinear and Adaptive Control Systems PDF eBook |
Author | Zhengtao Ding |
Publisher | Institution of Engineering and Technology |
Pages | 288 |
Release | 2013-04-04 |
Genre | Technology & Engineering |
ISBN | 1849195749 |
An adaptive system for linear systems with unknown parameters is a nonlinear system. The analysis of such adaptive systems requires similar techniques to analyse nonlinear systems. Therefore it is natural to treat adaptive control as a part of nonlinear control systems. Nonlinear and Adaptive Control Systems treats nonlinear control and adaptive controlin a unified framework, presenting the major results at a moderate mathematical level, suitable for MSc students and engineers with undergraduate degrees. Topics covered include introduction to nonlinear systems; state space models; describing functions forcommon nonlinear components; stability theory; feedback linearization; adaptive control; nonlinear observer design; backstepping design; disturbance rejection and output regulation; and control applications, including harmonic estimation and rejection inpower distribution systems, observer and control design for circadian rhythms, and discrete-time implementation of continuous-timenonlinear control laws.
Adaptive Control
Title | Adaptive Control PDF eBook |
Author | Shankar Sastry |
Publisher | Courier Corporation |
Pages | 402 |
Release | 2011-01-01 |
Genre | Technology & Engineering |
ISBN | 0486482022 |
This volume surveys the major results and techniques of analysis in the field of adaptive control. Focusing on linear, continuous time, single-input, single-output systems, the authors offer a clear, conceptual presentation of adaptive methods, enabling a critical evaluation of these techniques and suggesting avenues of further development. 1989 edition.
Learning-Based Adaptive Control
Title | Learning-Based Adaptive Control PDF eBook |
Author | Mouhacine Benosman |
Publisher | Butterworth-Heinemann |
Pages | 284 |
Release | 2016-08-02 |
Genre | Technology & Engineering |
ISBN | 0128031514 |
Adaptive control has been one of the main problems studied in control theory. The subject is well understood, yet it has a very active research frontier. This book focuses on a specific subclass of adaptive control, namely, learning-based adaptive control. As systems evolve during time or are exposed to unstructured environments, it is expected that some of their characteristics may change. This book offers a new perspective about how to deal with these variations. By merging together Model-Free and Model-Based learning algorithms, the author demonstrates, using a number of mechatronic examples, how the learning process can be shortened and optimal control performance can be reached and maintained. - Includes a good number of Mechatronics Examples of the techniques. - Compares and blends Model-free and Model-based learning algorithms. - Covers fundamental concepts, state-of-the-art research, necessary tools for modeling, and control.
Adaptive Control Design and Analysis
Title | Adaptive Control Design and Analysis PDF eBook |
Author | Gang Tao |
Publisher | John Wiley & Sons |
Pages | 652 |
Release | 2003-07-09 |
Genre | Science |
ISBN | 9780471274520 |
A systematic and unified presentation of the fundamentals of adaptive control theory in both continuous time and discrete time Today, adaptive control theory has grown to be a rigorous and mature discipline. As the advantages of adaptive systems for developing advanced applications grow apparent, adaptive control is becoming more popular in many fields of engineering and science. Using a simple, balanced, and harmonious style, this book provides a convenient introduction to the subject and improves one's understanding of adaptive control theory. Adaptive Control Design and Analysis features: Introduction to systems and control Stability, operator norms, and signal convergence Adaptive parameter estimation State feedback adaptive control designs Parametrization of state observers for adaptive control Unified continuous and discrete-time adaptive control L1+a robustness theory for adaptive systems Direct and indirect adaptive control designs Benchmark comparison study of adaptive control designs Multivariate adaptive control Nonlinear adaptive control Adaptive compensation of actuator nonlinearities End-of-chapter discussion, problems, and advanced topics As either a textbook or reference, this self-contained tutorial of adaptive control design and analysis is ideal for practicing engineers, researchers, and graduate students alike.