Measure, Topology, and Fractal Geometry

Measure, Topology, and Fractal Geometry
Title Measure, Topology, and Fractal Geometry PDF eBook
Author Gerald A. Edgar
Publisher Springer Science & Business Media
Pages 252
Release 2013-04-17
Genre Mathematics
ISBN 1475741340

Download Measure, Topology, and Fractal Geometry Book in PDF, Epub and Kindle

From the reviews: "In the world of mathematics, the 1980's might well be described as the "decade of the fractal". Starting with Benoit Mandelbrot's remarkable text The Fractal Geometry of Nature, there has been a deluge of books, articles and television programmes about the beautiful mathematical objects, drawn by computers using recursive or iterative algorithms, which Mandelbrot christened fractals. Gerald Edgar's book is a significant addition to this deluge. Based on a course given to talented high- school students at Ohio University in 1988, it is, in fact, an advanced undergraduate textbook about the mathematics of fractal geometry, treating such topics as metric spaces, measure theory, dimension theory, and even some algebraic topology. However, the book also contains many good illustrations of fractals (including 16 color plates), together with Logo programs which were used to generate them. ... Here then, at last, is an answer to the question on the lips of so many: 'What exactly is a fractal?' I do not expect many of this book's readers to achieve a mature understanding of this answer to the question, but anyone interested in finding out about the mathematics of fractal geometry could not choose a better place to start looking." #Mathematics Teaching#1

Fractals in Probability and Analysis

Fractals in Probability and Analysis
Title Fractals in Probability and Analysis PDF eBook
Author Christopher J. Bishop
Publisher Cambridge University Press
Pages 415
Release 2017
Genre Mathematics
ISBN 1107134110

Download Fractals in Probability and Analysis Book in PDF, Epub and Kindle

A mathematically rigorous introduction to fractals, emphasizing examples and fundamental ideas while minimizing technicalities.

Topology, Measures, and Fractals

Topology, Measures, and Fractals
Title Topology, Measures, and Fractals PDF eBook
Author Christoph Bandt
Publisher Wiley-VCH
Pages 238
Release 1992-05-08
Genre Mathematics
ISBN

Download Topology, Measures, and Fractals Book in PDF, Epub and Kindle

This volume contains surveys and original papers resulting from the international conference Topology and Measure VI.

The Geometry of Fractal Sets

The Geometry of Fractal Sets
Title The Geometry of Fractal Sets PDF eBook
Author K. J. Falconer
Publisher Cambridge University Press
Pages 184
Release 1985
Genre Mathematics
ISBN 9780521337052

Download The Geometry of Fractal Sets Book in PDF, Epub and Kindle

A mathematical study of the geometrical aspects of sets of both integral and fractional Hausdorff dimension. Considers questions of local density, the existence of tangents of such sets as well as the dimensional properties of their projections in various directions.

Measure, Topology, and Fractal Geometry

Measure, Topology, and Fractal Geometry
Title Measure, Topology, and Fractal Geometry PDF eBook
Author Gerald Edgar
Publisher Springer Science & Business Media
Pages 293
Release 2007-10-23
Genre Mathematics
ISBN 0387747494

Download Measure, Topology, and Fractal Geometry Book in PDF, Epub and Kindle

Based on a course given to talented high-school students at Ohio University in 1988, this book is essentially an advanced undergraduate textbook about the mathematics of fractal geometry. It nicely bridges the gap between traditional books on topology/analysis and more specialized treatises on fractal geometry. The book treats such topics as metric spaces, measure theory, dimension theory, and even some algebraic topology. It takes into account developments in the subject matter since 1990. Sections are clear and focused. The book contains plenty of examples, exercises, and good illustrations of fractals, including 16 color plates.

Fractal Dimension for Fractal Structures

Fractal Dimension for Fractal Structures
Title Fractal Dimension for Fractal Structures PDF eBook
Author Manuel Fernández-Martínez
Publisher Springer
Pages 217
Release 2019-04-23
Genre Mathematics
ISBN 3030166457

Download Fractal Dimension for Fractal Structures Book in PDF, Epub and Kindle

This book provides a generalised approach to fractal dimension theory from the standpoint of asymmetric topology by employing the concept of a fractal structure. The fractal dimension is the main invariant of a fractal set, and provides useful information regarding the irregularities it presents when examined at a suitable level of detail. New theoretical models for calculating the fractal dimension of any subset with respect to a fractal structure are posed to generalise both the Hausdorff and box-counting dimensions. Some specific results for self-similar sets are also proved. Unlike classical fractal dimensions, these new models can be used with empirical applications of fractal dimension including non-Euclidean contexts. In addition, the book applies these fractal dimensions to explore long-memory in financial markets. In particular, novel results linking both fractal dimension and the Hurst exponent are provided. As such, the book provides a number of algorithms for properly calculating the self-similarity exponent of a wide range of processes, including (fractional) Brownian motion and Lévy stable processes. The algorithms also make it possible to analyse long-memory in real stocks and international indexes. This book is addressed to those researchers interested in fractal geometry, self-similarity patterns, and computational applications involving fractal dimension and Hurst exponent.

Lectures on Fractal Geometry and Dynamical Systems

Lectures on Fractal Geometry and Dynamical Systems
Title Lectures on Fractal Geometry and Dynamical Systems PDF eBook
Author Ya. B. Pesin
Publisher American Mathematical Soc.
Pages 334
Release 2009
Genre Mathematics
ISBN 0821848895

Download Lectures on Fractal Geometry and Dynamical Systems Book in PDF, Epub and Kindle

Both fractal geometry and dynamical systems have a long history of development and have provided fertile ground for many great mathematicians and much deep and important mathematics. These two areas interact with each other and with the theory of chaos in a fundamental way: many dynamical systems (even some very simple ones) produce fractal sets, which are in turn a source of irregular 'chaotic' motions in the system. This book is an introduction to these two fields, with an emphasis on the relationship between them. The first half of the book introduces some of the key ideas in fractal geometry and dimension theory - Cantor sets, Hausdorff dimension, box dimension - using dynamical notions whenever possible, particularly one-dimensional Markov maps and symbolic dynamics. Various techniques for computing Hausdorff dimension are shown, leading to a discussion of Bernoulli and Markov measures and of the relationship between dimension, entropy, and Lyapunov exponents. In the second half of the book some examples of dynamical systems are considered and various phenomena of chaotic behaviour are discussed, including bifurcations, hyperbolicity, attractors, horseshoes, and intermittent and persistent chaos. These phenomena are naturally revealed in the course of our study of two real models from science - the FitzHugh - Nagumo model and the Lorenz system of differential equations. This book is accessible to undergraduate students and requires only standard knowledge in calculus, linear algebra, and differential equations. Elements of point set topology and measure theory are introduced as needed. This book is a result of the MASS course in analysis at Penn State University in the fall semester of 2008.