Lecture Notes on Electron Correlation and Magnetism
Title | Lecture Notes on Electron Correlation and Magnetism PDF eBook |
Author | Patrik Fazekas |
Publisher | World Scientific |
Pages | 794 |
Release | 1999 |
Genre | Science |
ISBN | 9810224745 |
Readership: Graduate students and researchers in condensed matter physics.
Topological Insulators and Topological Superconductors
Title | Topological Insulators and Topological Superconductors PDF eBook |
Author | B. Andrei Bernevig |
Publisher | Princeton University Press |
Pages | 264 |
Release | 2013-04-07 |
Genre | Science |
ISBN | 1400846730 |
This graduate-level textbook is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for graduate students and researchers preparing to work in this area, and it will be an essential reference both within and outside the classroom. The book begins with simple concepts such as Berry phases, Dirac fermions, Hall conductance and its link to topology, and the Hofstadter problem of lattice electrons in a magnetic field. It moves on to explain topological phases of matter such as Chern insulators, two- and three-dimensional topological insulators, and Majorana p-wave wires. Additionally, the book covers zero modes on vortices in topological superconductors, time-reversal topological superconductors, and topological responses/field theory and topological indices. The book also analyzes recent topics in condensed matter theory and concludes by surveying active subfields of research such as insulators with point-group symmetries and the stability of topological semimetals. Problems at the end of each chapter offer opportunities to test knowledge and engage with frontier research issues. Topological Insulators and Topological Superconductors will provide graduate students and researchers with the physical understanding and mathematical tools needed to embark on research in this rapidly evolving field.
The Quantum Hall Effect
Title | The Quantum Hall Effect PDF eBook |
Author | Richard E. Prange |
Publisher | Springer Science & Business Media |
Pages | 487 |
Release | 2012-12-06 |
Genre | Technology & Engineering |
ISBN | 146123350X |
After a foreword by Klaus von Klitzing, the first chapters of this book discuss the prehistory and the theoretical basis as well as the implications of the discovery of the Quantum Hall effect on superconductivity, superfluidity, and metrology, including experimentation. The second half of this volume is concerned with the theory of and experiments on the many body problem posed by fractional effect. Specific unsolved problems are mentioned throughout the book and a summary is made in the final chapter. The quantum Hall effect was discovered on about the hundredth anniversary of Hall's original work, and the finding was announced in 1980 by von Klitzing, Dorda and Pepper. Klaus von KIitzing was awarded the 1985 Nobel prize in physics for this discovery.
Topology in Magnetism
Title | Topology in Magnetism PDF eBook |
Author | Jiadong Zang |
Publisher | Springer |
Pages | 426 |
Release | 2018-09-24 |
Genre | Science |
ISBN | 3319973347 |
This book presents both experimental and theoretical aspects of topology in magnetism. It first discusses how the topology in real space is relevant for a variety of magnetic spin structures, including domain walls, vortices, skyrmions, and dynamic excitations, and then focuses on the phenomena that are driven by distinct topology in reciprocal momentum space, such as anomalous and spin Hall effects, topological insulators, and Weyl semimetals. Lastly, it examines how topology influences dynamic phenomena and excitations (such as spin waves, magnons, localized dynamic solitons, and Majorana fermions). The book also shows how these developments promise to lead the transformative revolution of information technology.
Magnetism in Topological Insulators
Title | Magnetism in Topological Insulators PDF eBook |
Author | Vladimir Litvinov |
Publisher | Springer |
Pages | 163 |
Release | 2019-05-07 |
Genre | Technology & Engineering |
ISBN | 3030120538 |
This book serves as a brief introduction to topological insulator physics and device applications. Particular attention is paid to the indirect exchange interaction mediated by near surface Dirac fermions and the spin texture this interaction favors. Along with useful information on semiconductor material systems, the book provides a theoretical background for most common concepts of TI physics. Readers will benefit from up to date information and methods needed to start working in TI physics, theory, experiment and device applications. Discusses inter-spin interaction via massless and massive Dirac excitations; Includes coverage of near-surface spin texture of the magnetic atoms as related to their mutual positions as well to their positions with respect to top and bottom surfaces in thin TI film; Describes non-RKKY oscillating inter-spin interaction as a signature of the topological state; Explains the origin of the giant Rashba interaction at quantum phase transition in TI-conventional semiconductors.
Handbook of Spintronics
Title | Handbook of Spintronics PDF eBook |
Author | Yongbing Xu |
Publisher | Springer |
Pages | 0 |
Release | 2015-10-14 |
Genre | Science |
ISBN | 9789400768918 |
Over two volumes and 1500 pages, the Handbook of Spintronics will cover all aspects of spintronics science and technology, including fundamental physics, materials properties and processing, established and emerging device technology and applications. Comprising 60 chapters from a large international team of leading researchers across academia and industry, the Handbook provides readers with an up-to-date and comprehensive review of this dynamic field of research. The opening chapters focus on the fundamental physical principles of spintronics in metals and semiconductors, including an introduction to spin quantum computing. Materials systems are then considered, with sections on metallic thin films and multilayers, magnetic tunnelling structures, hybrids, magnetic semiconductors and molecular spintronic materials. A separate section reviews the various characterisation methods appropriate to spintronics materials, including STM, spin-polarised photoemission, x-ray diffraction techniques and spin-polarised SEM. The third part of the Handbook contains chapters on the state of the art in device technology and applications, including spin valves, GMR and MTJ devices, MRAM technology, spin transistors and spin logic devices, spin torque devices, spin pumping and spin dynamics and other topics such as spin caloritronics. Each chapter considers the challenges faced by researchers in that area and contains some indications of the direction that future work in the field is likely to take. This reference work will be an essential and long-standing resource for the spintronics community.
Magnetism in Condensed Matter
Title | Magnetism in Condensed Matter PDF eBook |
Author | Stephen Blundell |
Publisher | OUP Oxford |
Pages | 272 |
Release | 2001-10-05 |
Genre | Science |
ISBN | 0191586641 |
An understanding of the quantum mechanical nature of magnetism has led to the development of new magnetic materials which are used as permanent magnets, sensors, and information storage. Behind these practical applications lie a range of fundamental ideas, including symmetry breaking, order parameters, excitations, frustration, and reduced dimensionality. This superb new textbook presents a logical account of these ideas, staring from basic concepts in electromagnetsim and quantum mechanics. It outlines the origin of magnetic moments in atoms and how these moments can be affected by their local environment inside a crystal. The different types of interactions which can be present between magnetic moments are described. The final chapters of the book are devoted to the magnetic properties of metals, and to the complex behaviour which can occur when competing magnetic interactions are present and/or the system has a reduced dimensionality. Throughout the text, the theorectical principles are applied to real systems. There is substantial discussion of experimental techniques and current reserach topics. The book is copiously illustrated and contains detailed appendices which cover the fundamental principles.