Topology and Geometry in Polymer Science
Title | Topology and Geometry in Polymer Science PDF eBook |
Author | Stuart G. Whittington |
Publisher | Springer Science & Business Media |
Pages | 209 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 1461217121 |
This IMA Volume in Mathematics and its Applications TOPOLOGY AND GEOMETRY IN POLYMER SCIENCE is based on the proceedings of a very successful one-week workshop with the same title. This workshop was an integral part of the 1995-1996 IMA program on "Mathematical Methods in Materials Science." We would like to thank Stuart G. Whittington, De Witt Sumners, and Timothy Lodge for their excellent work as organizers of the meeting and for editing the proceedings. We also take this opportunity to thank the National Science Foun dation (NSF), the Army Research Office (ARO) and the Office of Naval Research (ONR), whose financial support made the workshop possible. A vner Friedman Robert Gulliver v PREFACE This book is the product of a workshop on Topology and Geometry of Polymers, held at the IMA in June 1996. The workshop brought together topologists, combinatorialists, theoretical physicists and polymer scientists, who share an interest in characterizing and predicting the microscopic en tanglement properties of polymers, and their effect on macroscopic physical properties.
Topology of Polymers
Title | Topology of Polymers PDF eBook |
Author | Koya Shimokawa |
Publisher | Springer Nature |
Pages | 85 |
Release | 2019-12-06 |
Genre | Mathematics |
ISBN | 4431568883 |
Plastics, films, and synthetic fibers are among typical examples of polymer materials fabricated industrially in massive quantities as the basis of modern social life. By comparison, polymers from biological resources, including proteins, DNAs, and cotton fibers, are essential in various processes in living systems. Such polymers are molecular substances, constituted by the linking of hundreds to tens of thousands of small chemical unit (monomer) components. Thus, the form of polymer molecules is frequently expressed by line geometries, and their linear and non-linear forms are believed to constitute the fundamental basis for their properties and functions. In the field of polymer chemistry and polymer materials science, the choice of macromolecules has continuously been extended from linear or randomly branched forms toward a variety of precisely controlled topologies by the introduction of intriguing synthetic techniques. Moreover, during the first decade of this century, a number of impressive breakthroughs have been achieved to produce an important class of polymers having a variety of cyclic and multicyclic topologies. These developments now offer unique opportunities in polymer materials design to create unique properties and functions based on the form, i.e., topology, of polymer molecules. The introduction and application of topological geometry (soft geometry) to polymer molecules is a crucial requirement to account for the basic geometrical properties of polymer chains uniquely flexible in nature, in contrast to small chemical compounds conceived upon Euclidian geometry (hard geometry) principles. Topological geometry and graph theory are introduced for the systematic classification and notation of the non-linear constructions of polymer molecules, including not only branched but also single cyclic and multicyclic polymer topologies. On that basis, the geometrical–topological relationship between different polymers having distinctive constructions is discussed. A unique conception of topological isomerism is thus formed, which contrasts with that of conventional constitutional and stereoisomerism occurring in small chemical compounds. Through the close collaboration of topology experts Shimokawa and Ishihara and the polymer chemist Tezuka, this monograph covers the fundamentals and selected current topics of topology applied in polymers and topological polymer chemistry. In particular, the aim is to provide novel insights jointly revealed through a unique interaction between mathematics (topology) and polymer materials science.
Topology and Geometry in Polymer Science
Title | Topology and Geometry in Polymer Science PDF eBook |
Author | Stuart G. Whittington |
Publisher | Springer Science & Business Media |
Pages | 228 |
Release | 1998-08-13 |
Genre | Mathematics |
ISBN | 9780387985800 |
This book contains contributions from a workshop on topology and geometry of polymers, held at the IMA in June 1996, which brought together topologists, combinatorialists, theoretical physicists and polymer scientists, with a common interest in polymer topology. Polymers can be highly self-entangled even in dilute solution. In the melt the inter- and intra-chain entanglements can dominate the rheological properties of these phenomena. Although the possibility of knotting in ring polymers has been recognized for more than thirty years it is only recently that the powerful methods of algebraic topology have been used in treating models of polymers. This book contains a series of chapters which review the current state of the field and give an up to date account of what is known and perhaps more importantly, what is still unknown. The field abounds with open problems. The book is of interest to workers in polymer statistical mechanics but will also be useful as an introduction to topological methods for polymer scientists, and will introduce mathematicians to an area of science where topological approaches are making a substantial contribution.
New Scientific Applications of Geometry and Topology
Title | New Scientific Applications of Geometry and Topology PDF eBook |
Author | De Witt L. Sumners |
Publisher | American Mathematical Soc. |
Pages | 266 |
Release | 1992 |
Genre | Mathematics |
ISBN | 9780821855027 |
Geometry and topology are subjects generally considered to be "pure" mathematics. Recently, however, some of the methods and results in these two areas have found new utility in both wet-lab science (biology and chemistry) and theoretical physics. Conversely, science is influencing mathematics, from posing questions that call for the construction of mathematical models to exporting theoretical methods of attack on long-standing problems of mathematical interest. Based on an AMS Short Course held in January 1992, this book contains six introductory articles on these intriguing new connections. There are articles by a chemist and a biologist about mathematics, and four articles by mathematicians writing about science and mathematics involved. Because this book communicates the excitement and utility of mathematics research at an elementary level, it is an excellent textbook in an advanced undergraduate mathematics course.
Topological Polymer Chemistry
Title | Topological Polymer Chemistry PDF eBook |
Author | Yasuyuki Tezuka |
Publisher | World Scientific |
Pages | 365 |
Release | 2013 |
Genre | Science |
ISBN | 9814401285 |
There are examples aplenty in the macroscopic world that demonstrate the form of objects directing their functions and properties. On the other hand, the fabrication of extremely small objects having precisely defined structures has only recently become an attractive challenge, which is now opening the door to nanoscience and nanotechnology.In the field of synthetic polymer chemistry, a number of critical breakthroughs have been achieved during the first decade of this century to produce an important class of polymers having a variety of cyclic and multicyclic topologies. These developments now offer unique opportunities in polymer materials design to create unprecedented properties and functions simply based on the form, i.e. topology, of polymer molecules.In this book on topological polymer chemistry, the important developments in this growing area will be collected for the first time, with particular emphasis on new conceptual insights for polymer chemistry and polymer materials. The book will systematically review topological polymer chemistry from basic aspects to practice, and give a broad overview of cyclic polymers covering new synthesis, structure characterization, basic properties/functions and the eventual applications.
The Role of Topology in Materials
Title | The Role of Topology in Materials PDF eBook |
Author | Sanju Gupta |
Publisher | Springer |
Pages | 307 |
Release | 2018-04-21 |
Genre | Science |
ISBN | 3319765965 |
This book presents the most important advances in the class of topological materials and discusses the topological characterization, modeling and metrology of materials. Further, it addresses currently emerging characterization techniques such as optical and acoustic, vibrational spectroscopy (Brillouin, infrared, Raman), electronic, magnetic, fluorescence correlation imaging, laser lithography, small angle X-ray and neutron scattering and other techniques, including site-selective nanoprobes. The book analyzes the topological aspects to identify and quantify these effects in terms of topology metrics. The topological materials are ubiquitous and range from (i) de novo nanoscale allotropes of carbons in various forms such as nanotubes, nanorings, nanohorns, nanowalls, peapods, graphene, etc. to (ii) metallo-organic frameworks, (iii) helical gold nanotubes, (iv) Möbius conjugated polymers, (v) block co-polymers, (vi) supramolecular assemblies, to (vii) a variety of biological and soft-matter systems, e.g. foams and cellular materials, vesicles of different shapes and genera, biomimetic membranes, and filaments, (viii) topological insulators and topological superconductors, (ix) a variety of Dirac materials including Dirac and Weyl semimetals, as well as (x) knots and network structures. Topological databases and algorithms to model such materials have been also established in this book. In order to understand and properly characterize these important emergent materials, it is necessary to go far beyond the traditional paradigm of microscopic structure–property–function relationships to a paradigm that explicitly incorporates topological aspects from the outset to characterize and/or predict the physical properties and currently untapped functionalities of these advanced materials. Simulation and modeling tools including quantum chemistry, molecular dynamics, 3D visualization and tomography are also indispensable. These concepts have found applications in condensed matter physics, materials science and engineering, physical chemistry and biophysics, and the various topics covered in the book have potential applications in connection with novel synthesis techniques, sensing and catalysis. As such, the book offers a unique resource for graduate students and researchers alike.
Applications of Contact Geometry and Topology in Physics
Title | Applications of Contact Geometry and Topology in Physics PDF eBook |
Author | Arkady Leonidovich Kholodenko |
Publisher | World Scientific |
Pages | 492 |
Release | 2013 |
Genre | Mathematics |
ISBN | 9814412090 |
Although contact geometry and topology is briefly discussed in V I Arnol''d''s book Mathematical Methods of Classical Mechanics (Springer-Verlag, 1989, 2nd edition), it still remains a domain of research in pure mathematics, e.g. see the recent monograph by H Geiges An Introduction to Contact Topology (Cambridge U Press, 2008). Some attempts to use contact geometry in physics were made in the monograph Contact Geometry and Nonlinear Differential Equations (Cambridge U Press, 2007). Unfortunately, even the excellent style of this monograph is not sufficient to attract the attention of the physics community to this type of problems. This book is the first serious attempt to change the existing status quo. In it we demonstrate that, in fact, all branches of theoretical physics can be rewritten in the language of contact geometry and topology: from mechanics, thermodynamics and electrodynamics to optics, gauge fields and gravity; from physics of liquid crystals to quantum mechanics and quantum computers, etc. The book is written in the style of famous Landau-Lifshitz (L-L) multivolume course in theoretical physics. This means that its readers are expected to have solid background in theoretical physics (at least at the level of the L-L course). No prior knowledge of specialized mathematics is required. All needed new mathematics is given in the context of discussed physical problems. As in the L-L course some problems/exercises are formulated along the way and, again as in the L-L course, these are always supplemented by either solutions or by hints (with exact references). Unlike the L-L course, though, some definitions, theorems, and remarks are also presented. This is done with the purpose of stimulating the interest of our readers in deeper study of subject matters discussed in the text.