Integrable Hamiltonian Systems

Integrable Hamiltonian Systems
Title Integrable Hamiltonian Systems PDF eBook
Author A.V. Bolsinov
Publisher CRC Press
Pages 752
Release 2004-02-25
Genre Mathematics
ISBN 0203643429

Download Integrable Hamiltonian Systems Book in PDF, Epub and Kindle

Integrable Hamiltonian systems have been of growing interest over the past 30 years and represent one of the most intriguing and mysterious classes of dynamical systems. This book explores the topology of integrable systems and the general theory underlying their qualitative properties, singularites, and topological invariants. The authors,

Topological Methods in the Theory of Integrable Systems

Topological Methods in the Theory of Integrable Systems
Title Topological Methods in the Theory of Integrable Systems PDF eBook
Author Alekseĭ Viktorovich Bolsinov
Publisher
Pages 360
Release 2006
Genre Mathematics
ISBN

Download Topological Methods in the Theory of Integrable Systems Book in PDF, Epub and Kindle

This volume comprises selected papers on the subject of the topology of integrable systems theory which studies their qualitative properties, singularities and topological invariants. The aim of this volume is to develop the classification theory for integrable systems with two degrees of freedom which would allow for distinguishing such systems up to two natural equivalence relations. The first one is the equivalence of the associated foliations into Liouville tori. The second is the usual orbital equivalence. Also, general methods of classification theory are applied to the classical integrable problems in rigid body dynamics. In addition, integrable geodesic flows on two-dimensional surfaces are analysed from the viewpoint of the topology of integrable systems.

Seiberg-Witten Theory and Integrable Systems

Seiberg-Witten Theory and Integrable Systems
Title Seiberg-Witten Theory and Integrable Systems PDF eBook
Author Andrei Marshakov
Publisher World Scientific
Pages 268
Release 1999
Genre Science
ISBN 9789810236366

Download Seiberg-Witten Theory and Integrable Systems Book in PDF, Epub and Kindle

In the past few decades many attempts have been made to search for a consistent formulation of quantum field theory beyond perturbation theory. One of the most interesting examples is the Seiberg-Witten ansatz for the N=2 SUSY supersymmetric Yang-Mills gauge theories in four dimensions. The aim of this book is to present in a clear form the main ideas of the relation between the exact solutions to the supersymmetric (SUSY) Yang-Mills theories and integrable systems. This relation is a beautiful example of reformulation of close-to-realistic physical theory in terms widely known in mathematical physics ? systems of integrable nonlinear differential equations and their algebro-geometric solutions.First, the book reviews what is known about the physical problem: the construction of low-energy effective actions for the N=2 Yang-Mills theories from the traditional viewpoint of quantum field theory. Then the necessary background information from the theory of integrable systems is presented. In particular the author considers the definition of the algebro-geometric solutions to integrable systems in terms of complex curves or Riemann surfaces and the generating meromorphic 1-form. These definitions are illustrated in detail on the basic example of the periodic Toda chain.Several ?toy-model? examples of string theory solutions where the structures of integrable systems appear are briefly discussed. Then the author proceeds to the Seiberg-Witten solutions and show that they are indeed defined by the same data as finite-gap solutions to integrable systems. The complete formulation requires the introduction of certain deformations of the finite-gap solutions described in terms of quasiclassical or Whitham hierarchies. The explicit differential equations and direct computations of the prepotential of the effective theory are presented and compared when possible with the well-known computations from supersymmetric quantum gauge theories.Finally, the book discusses the properties of the exact solutions to SUSY Yang-Mills theories and their relation to integrable systems in the general context of the modern approach to nonperturbative string or M-theory.

Topological Methods in Hydrodynamics

Topological Methods in Hydrodynamics
Title Topological Methods in Hydrodynamics PDF eBook
Author Vladimir I. Arnold
Publisher Springer Science & Business Media
Pages 376
Release 2008-01-08
Genre Mathematics
ISBN 0387225897

Download Topological Methods in Hydrodynamics Book in PDF, Epub and Kindle

The first monograph to treat topological, group-theoretic, and geometric problems of ideal hydrodynamics and magnetohydrodynamics from a unified point of view. It describes the necessary preliminary notions both in hydrodynamics and pure mathematics with numerous examples and figures. The book is accessible to graduates as well as pure and applied mathematicians working in hydrodynamics, Lie groups, dynamical systems, and differential geometry.

Topological Classification of Integrable Systems

Topological Classification of Integrable Systems
Title Topological Classification of Integrable Systems PDF eBook
Author A. T. Fomenko
Publisher American Mathematical Soc.
Pages 448
Release 1991
Genre Differential equations
ISBN 9780821841051

Download Topological Classification of Integrable Systems Book in PDF, Epub and Kindle

Spinning Tops

Spinning Tops
Title Spinning Tops PDF eBook
Author M. Audin
Publisher Cambridge University Press
Pages 156
Release 1999-11-13
Genre Mathematics
ISBN 9780521779197

Download Spinning Tops Book in PDF, Epub and Kindle

Since the time of Lagrange and Euler, it has been well known that an understanding of algebraic curves can illuminate the picture of rigid bodies provided by classical mechanics. A modern view of the role played by algebraic geometry has been established iby many mathematicians. This book presents some of these techniques, which fall within the orbit of finite dimensional integrable systems. The main body of the text presents a rich assortment of methods and ideas from algebraic geometry prompted by classical mechanics, whilst in appendices the general, abstract theory is described. The methods are given a topological application to the study of Liouville tori and their bifurcations. The book is based on courses for graduate students given by the author at Strasbourg University but the wealth of original ideas will make it also appeal to researchers.

Integrable Systems, Topology, and Physics

Integrable Systems, Topology, and Physics
Title Integrable Systems, Topology, and Physics PDF eBook
Author Martin A. Guest
Publisher American Mathematical Soc.
Pages 344
Release 2002
Genre Mathematics
ISBN 0821829394

Download Integrable Systems, Topology, and Physics Book in PDF, Epub and Kindle

Ideas and techniques from the theory of integrable systems are playing an increasingly important role in geometry. Thanks to the development of tools from Lie theory, algebraic geometry, symplectic geometry, and topology, classical problems are investigated more systematically. New problems are also arising in mathematical physics. A major international conference was held at the University of Tokyo in July 2000. It brought together scientists in all of the areas influenced by integrable systems. This book is the second of three collections of expository and research articles. This volume focuses on topology and physics. The role of zero curvature equations outside of the traditional context of differential geometry has been recognized relatively recently, but it has been an extraordinarily productive one, and most of the articles in this volume make some reference to it. Symplectic geometry, Floer homology, twistor theory, quantum cohomology, and the structure of special equations of mathematical physics, such as the Toda field equations--all of these areas have gained from the integrable systems point of view and contributed to it. Many of the articles in this volume are written by prominent researchers and will serve as introductions to the topics. It is intended for graduate students and researchers interested in integrable systems and their relations to differential geometry, topology, algebraic geometry, and physics. The first volume from this conference also available from the AMS is Differential Geometry and Integrable Systems, Volume 308 CONM/308 in the Contemporary Mathematics series. The forthcoming third volume will be published by the Mathematical Society of Japan and will be available outside of Japan from the AMS in the Advanced Studies in Pure Mathematics series.