Topological, Differential and Conformal Geometry of Surfaces

Topological, Differential and Conformal Geometry of Surfaces
Title Topological, Differential and Conformal Geometry of Surfaces PDF eBook
Author Norbert A'Campo
Publisher Springer Nature
Pages 282
Release 2021-10-27
Genre Mathematics
ISBN 3030890325

Download Topological, Differential and Conformal Geometry of Surfaces Book in PDF, Epub and Kindle

This book provides an introduction to the main geometric structures that are carried by compact surfaces, with an emphasis on the classical theory of Riemann surfaces. It first covers the prerequisites, including the basics of differential forms, the Poincaré Lemma, the Morse Lemma, the classification of compact connected oriented surfaces, Stokes’ Theorem, fixed point theorems and rigidity theorems. There is also a novel presentation of planar hyperbolic geometry. Moving on to more advanced concepts, it covers topics such as Riemannian metrics, the isometric torsion-free connection on vector fields, the Ansatz of Koszul, the Gauss–Bonnet Theorem, and integrability. These concepts are then used for the study of Riemann surfaces. One of the focal points is the Uniformization Theorem for compact surfaces, an elementary proof of which is given via a property of the energy functional. Among numerous other results, there is also a proof of Chow’s Theorem on compact holomorphic submanifolds in complex projective spaces. Based on lecture courses given by the author, the book will be accessible to undergraduates and graduates interested in the analytic theory of Riemann surfaces.

Topological, Differential and Conformal Geometry of Surfaces

Topological, Differential and Conformal Geometry of Surfaces
Title Topological, Differential and Conformal Geometry of Surfaces PDF eBook
Author Norbert A'Campo
Publisher
Pages 0
Release 2021
Genre
ISBN 9783030890339

Download Topological, Differential and Conformal Geometry of Surfaces Book in PDF, Epub and Kindle

This book provides an introduction to the main geometric structures that are carried by compact surfaces, with an emphasis on the classical theory of Riemann surfaces. It first covers the prerequisites, including the basics of differential forms, the Poincaré Lemma, the Morse Lemma, the classification of compact connected oriented surfaces, Stokes' Theorem, fixed point theorems and rigidity theorems. There is also a novel presentation of planar hyperbolic geometry. Moving on to more advanced concepts, it covers topics such as Riemannian metrics, the isometric torsion-free connection on vector fields, the Ansatz of Koszul, the Gauss-Bonnet Theorem, and integrability. These concepts are then used for the study of Riemann surfaces. One of the focal points is the Uniformization Theorem for compact surfaces, an elementary proof of which is given via a property of the energy functional. Among numerous other results, there is also a proof of Chow's Theorem on compact holomorphic submanifolds in complex projective spaces. Based on lecture courses given by the author, the book will be accessible to undergraduates and graduates interested in the analytic theory of Riemann surfaces.

Geometry and Topology of Manifolds: Surfaces and Beyond

Geometry and Topology of Manifolds: Surfaces and Beyond
Title Geometry and Topology of Manifolds: Surfaces and Beyond PDF eBook
Author Vicente Muñoz
Publisher American Mathematical Soc.
Pages 408
Release 2020-10-21
Genre Education
ISBN 1470461323

Download Geometry and Topology of Manifolds: Surfaces and Beyond Book in PDF, Epub and Kindle

This book represents a novel approach to differential topology. Its main focus is to give a comprehensive introduction to the classification of manifolds, with special attention paid to the case of surfaces, for which the book provides a complete classification from many points of view: topological, smooth, constant curvature, complex, and conformal. Each chapter briefly revisits basic results usually known to graduate students from an alternative perspective, focusing on surfaces. We provide full proofs of some remarkable results that sometimes are missed in basic courses (e.g., the construction of triangulations on surfaces, the classification of surfaces, the Gauss-Bonnet theorem, the degree-genus formula for complex plane curves, the existence of constant curvature metrics on conformal surfaces), and we give hints to questions about higher dimensional manifolds. Many examples and remarks are scattered through the book. Each chapter ends with an exhaustive collection of problems and a list of topics for further study. The book is primarily addressed to graduate students who did take standard introductory courses on algebraic topology, differential and Riemannian geometry, or algebraic geometry, but have not seen their deep interconnections, which permeate a modern approach to geometry and topology of manifolds.

Painleve Equations in the Differential Geometry of Surfaces

Painleve Equations in the Differential Geometry of Surfaces
Title Painleve Equations in the Differential Geometry of Surfaces PDF eBook
Author Alexander I. Bobenko TU Berlin
Publisher Springer
Pages 125
Release 2003-07-01
Genre Mathematics
ISBN 3540444521

Download Painleve Equations in the Differential Geometry of Surfaces Book in PDF, Epub and Kindle

This book brings together two different branches of mathematics: the theory of Painlev and the theory of surfaces. Self-contained introductions to both these fields are presented. It is shown how some classical problems in surface theory can be solved using the modern theory of Painlev equations. In particular, an essential part of the book is devoted to Bonnet surfaces, i.e. to surfaces possessing families of isometries preserving the mean curvature function. A global classification of Bonnet surfaces is given using both ingredients of the theory of Painlev equations: the theory of isomonodromic deformation and the Painlev property. The book is illustrated by plots of surfaces. It is intended to be used by mathematicians and graduate students interested in differential geometry and Painlev equations. Researchers working in one of these areas can become familiar with another relevant branch of mathematics.

Integrable Systems, Geometry, and Topology

Integrable Systems, Geometry, and Topology
Title Integrable Systems, Geometry, and Topology PDF eBook
Author Chuu-lian Terng
Publisher American Mathematical Soc.
Pages 270
Release 2006
Genre Mathematics
ISBN 0821840487

Download Integrable Systems, Geometry, and Topology Book in PDF, Epub and Kindle

The articles in this volume are based on lectures from a program on integrable systems and differential geometry held at Taiwan's National Center for Theoretical Sciences. As is well-known, for many soliton equations, the solutions have interpretations as differential geometric objects, and thereby techniques of soliton equations have been successfully applied to the study of geometric problems. The article by Burstall gives a beautiful exposition on isothermic surfaces and theirrelations to integrable systems, and the two articles by Guest give an introduction to quantum cohomology, carry out explicit computations of the quantum cohomology of flag manifolds and Hirzebruch surfaces, and give a survey of Givental's quantum differential equations. The article by Heintze, Liu,and Olmos is on the theory of isoparametric submanifolds in an arbitrary Riemannian manifold, which is related to the n-wave equation when the ambient manifold is Euclidean. Mukai-Hidano and Ohnita present a survey on the moduli space of Yang-Mills-Higgs equations on Riemann surfaces. The article by Terng and Uhlenbeck explains the gauge equivalence of the matrix non-linear Schrödinger equation, the Schrödinger flow on Grassmanian, and the Heisenberg Feromagnetic model. The bookprovides an introduction to integrable systems and their relation to differential geometry. It is suitable for advanced graduate students and research mathematicians. Information for our distributors: Titles in this series are copublished with International Press, Cambridge, MA.

Differential Geometry of Curves and Surfaces

Differential Geometry of Curves and Surfaces
Title Differential Geometry of Curves and Surfaces PDF eBook
Author Shoshichi Kobayashi
Publisher Springer Nature
Pages 192
Release 2019-11-13
Genre Mathematics
ISBN 9811517398

Download Differential Geometry of Curves and Surfaces Book in PDF, Epub and Kindle

This book is a posthumous publication of a classic by Prof. Shoshichi Kobayashi, who taught at U.C. Berkeley for 50 years, recently translated by Eriko Shinozaki Nagumo and Makiko Sumi Tanaka. There are five chapters: 1. Plane Curves and Space Curves; 2. Local Theory of Surfaces in Space; 3. Geometry of Surfaces; 4. Gauss–Bonnet Theorem; and 5. Minimal Surfaces. Chapter 1 discusses local and global properties of planar curves and curves in space. Chapter 2 deals with local properties of surfaces in 3-dimensional Euclidean space. Two types of curvatures — the Gaussian curvature K and the mean curvature H —are introduced. The method of the moving frames, a standard technique in differential geometry, is introduced in the context of a surface in 3-dimensional Euclidean space. In Chapter 3, the Riemannian metric on a surface is introduced and properties determined only by the first fundamental form are discussed. The concept of a geodesic introduced in Chapter 2 is extensively discussed, and several examples of geodesics are presented with illustrations. Chapter 4 starts with a simple and elegant proof of Stokes’ theorem for a domain. Then the Gauss–Bonnet theorem, the major topic of this book, is discussed at great length. The theorem is a most beautiful and deep result in differential geometry. It yields a relation between the integral of the Gaussian curvature over a given oriented closed surface S and the topology of S in terms of its Euler number χ(S). Here again, many illustrations are provided to facilitate the reader’s understanding. Chapter 5, Minimal Surfaces, requires some elementary knowledge of complex analysis. However, the author retained the introductory nature of this book and focused on detailed explanations of the examples of minimal surfaces given in Chapter 2.

Global Differential Geometry and Global Analysis

Global Differential Geometry and Global Analysis
Title Global Differential Geometry and Global Analysis PDF eBook
Author Dirk Ferus
Publisher Springer
Pages 289
Release 2006-11-14
Genre Mathematics
ISBN 354046445X

Download Global Differential Geometry and Global Analysis Book in PDF, Epub and Kindle

All papers appearing in this volume are original research articles and have not been published elsewhere. They meet the requirements that are necessary for publication in a good quality primary journal. E.Belchev, S.Hineva: On the minimal hypersurfaces of a locally symmetric manifold. -N.Blasic, N.Bokan, P.Gilkey: The spectral geometry of the Laplacian and the conformal Laplacian for manifolds with boundary. -J.Bolton, W.M.Oxbury, L.Vrancken, L.M. Woodward: Minimal immersions of RP2 into CPn. -W.Cieslak, A. Miernowski, W.Mozgawa: Isoptics of a strictly convex curve. -F.Dillen, L.Vrancken: Generalized Cayley surfaces. -A.Ferrandez, O.J.Garay, P.Lucas: On a certain class of conformally flat Euclidean hypersurfaces. -P.Gauduchon: Self-dual manifolds with non-negative Ricci operator. -B.Hajduk: On the obstruction group toexistence of Riemannian metrics of positive scalar curvature. -U.Hammenstaedt: Compact manifolds with 1/4-pinched negative curvature. -J.Jost, Xiaowei Peng: The geometry of moduli spaces of stable vector bundles over Riemannian surfaces. - O.Kowalski, F.Tricerri: A canonical connection for locally homogeneous Riemannian manifolds. -M.Kozlowski: Some improper affine spheres in A3. -R.Kusner: A maximum principle at infinity and the topology of complete embedded surfaces with constant mean curvature. -Anmin Li: Affine completeness and Euclidean completeness. -U.Lumiste: On submanifolds with parallel higher order fundamental form in Euclidean spaces. -A.Martinez, F.Milan: Convex affine surfaces with constant affine mean curvature. -M.Min-Oo, E.A.Ruh, P.Tondeur: Transversal curvature and tautness for Riemannian foliations. -S.Montiel, A.Ros: Schroedinger operators associated to a holomorphic map. -D.Motreanu: Generic existence of Morse functions on infinite dimensional Riemannian manifolds and applications. -B.Opozda: Some extensions of Radon's theorem.