Information Theory and Statistics

Information Theory and Statistics
Title Information Theory and Statistics PDF eBook
Author Solomon Kullback
Publisher Courier Corporation
Pages 436
Release 2012-09-11
Genre Mathematics
ISBN 0486142043

Download Information Theory and Statistics Book in PDF, Epub and Kindle

Highly useful text studies logarithmic measures of information and their application to testing statistical hypotheses. Includes numerous worked examples and problems. References. Glossary. Appendix. 1968 2nd, revised edition.

Information Theory and Statistical Learning

Information Theory and Statistical Learning
Title Information Theory and Statistical Learning PDF eBook
Author Frank Emmert-Streib
Publisher Springer Science & Business Media
Pages 443
Release 2009
Genre Computers
ISBN 0387848150

Download Information Theory and Statistical Learning Book in PDF, Epub and Kindle

This interdisciplinary text offers theoretical and practical results of information theoretic methods used in statistical learning. It presents a comprehensive overview of the many different methods that have been developed in numerous contexts.

Information Theory and Statistics

Information Theory and Statistics
Title Information Theory and Statistics PDF eBook
Author Imre Csiszár
Publisher Now Publishers Inc
Pages 128
Release 2004
Genre Computers
ISBN 9781933019055

Download Information Theory and Statistics Book in PDF, Epub and Kindle

Information Theory and Statistics: A Tutorial is concerned with applications of information theory concepts in statistics, in the finite alphabet setting. The topics covered include large deviations, hypothesis testing, maximum likelihood estimation in exponential families, analysis of contingency tables, and iterative algorithms with an "information geometry" background. Also, an introduction is provided to the theory of universal coding, and to statistical inference via the minimum description length principle motivated by that theory. The tutorial does not assume the reader has an in-depth knowledge of Information Theory or statistics. As such, Information Theory and Statistics: A Tutorial, is an excellent introductory text to this highly-important topic in mathematics, computer science and electrical engineering. It provides both students and researchers with an invaluable resource to quickly get up to speed in the field.

Topics in Statistical Information Theory

Topics in Statistical Information Theory
Title Topics in Statistical Information Theory PDF eBook
Author Solomon Kullback
Publisher Springer Science & Business Media
Pages 169
Release 2013-12-01
Genre Mathematics
ISBN 1461580803

Download Topics in Statistical Information Theory Book in PDF, Epub and Kindle

The relevance of information theory to statistical theory and its applications to stochastic processes is a unifying influence in these TOPICS. The integral representation of discrimination information is presented in these TOPICS reviewing various approaches used in the literature, and is also developed herein using intrinsically information-theoretic methods. Log likelihood ratios associated with various stochastic processes are computed by an application of minimum discrimination information estimates. Linear discriminant functionals are used in the information-theoretic analysis of a variety of stochastic processes. Sections are numbered serially within each chapter, with a decimal notation for subsections. Equations, examples, theorems and lemmas, are numbered serially within each section with a decimal notation. The digits to the left of the decimal point represent the section and the digits to the right of the decimal point the serial number within the section. When reference is made to a section, equation, example, theorem or lemma within the same chapter only the section number or equation number, etc., is given. When the reference is to a section ,equation, etc., in a different chapter, then in addition to the section or equation etc., number, the chapter number is also given. References to the bibliography are by the author's name followed by the year of publication in parentheses. The transpose of a matrix is denoted by a prime; thus one-row matrices are denoted by primes as the transposes of one-column matrices (vectors).

Entropy and Information Theory

Entropy and Information Theory
Title Entropy and Information Theory PDF eBook
Author Robert M. Gray
Publisher Springer Science & Business Media
Pages 346
Release 2013-03-14
Genre Computers
ISBN 1475739826

Download Entropy and Information Theory Book in PDF, Epub and Kindle

This book is devoted to the theory of probabilistic information measures and their application to coding theorems for information sources and noisy channels. The eventual goal is a general development of Shannon's mathematical theory of communication, but much of the space is devoted to the tools and methods required to prove the Shannon coding theorems. These tools form an area common to ergodic theory and information theory and comprise several quantitative notions of the information in random variables, random processes, and dynamical systems. Examples are entropy, mutual information, conditional entropy, conditional information, and discrimination or relative entropy, along with the limiting normalized versions of these quantities such as entropy rate and information rate. Much of the book is concerned with their properties, especially the long term asymptotic behavior of sample information and expected information. This is the only up-to-date treatment of traditional information theory emphasizing ergodic theory.

Information Theory, Inference and Learning Algorithms

Information Theory, Inference and Learning Algorithms
Title Information Theory, Inference and Learning Algorithms PDF eBook
Author David J. C. MacKay
Publisher Cambridge University Press
Pages 694
Release 2003-09-25
Genre Computers
ISBN 9780521642989

Download Information Theory, Inference and Learning Algorithms Book in PDF, Epub and Kindle

Information theory and inference, taught together in this exciting textbook, lie at the heart of many important areas of modern technology - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics and cryptography. The book introduces theory in tandem with applications. Information theory is taught alongside practical communication systems such as arithmetic coding for data compression and sparse-graph codes for error-correction. Inference techniques, including message-passing algorithms, Monte Carlo methods and variational approximations, are developed alongside applications to clustering, convolutional codes, independent component analysis, and neural networks. Uniquely, the book covers state-of-the-art error-correcting codes, including low-density-parity-check codes, turbo codes, and digital fountain codes - the twenty-first-century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, the book is ideal for self-learning, and for undergraduate or graduate courses. It also provides an unparalleled entry point for professionals in areas as diverse as computational biology, financial engineering and machine learning.

Information, Physics, and Computation

Information, Physics, and Computation
Title Information, Physics, and Computation PDF eBook
Author Marc Mézard
Publisher Oxford University Press
Pages 584
Release 2009-01-22
Genre Computers
ISBN 019857083X

Download Information, Physics, and Computation Book in PDF, Epub and Kindle

A very active field of research is emerging at the frontier of statistical physics, theoretical computer science/discrete mathematics, and coding/information theory. This book sets up a common language and pool of concepts, accessible to students and researchers from each of these fields.