Topics In Nanoscience (In 2 Parts)

Topics In Nanoscience (In 2 Parts)
Title Topics In Nanoscience (In 2 Parts) PDF eBook
Author Wolfram Schommers
Publisher World Scientific
Pages 872
Release 2021-12-17
Genre Science
ISBN 9811256136

Download Topics In Nanoscience (In 2 Parts) Book in PDF, Epub and Kindle

With the development of the scanning tunneling microscope, nanoscience became an important discipline. Single atoms could be manipulated in a controlled manner, and it became possible to change matter at its 'ultimate' level; it is the level on which the properties of matter emerge. This possibility enables to construct and to produce devices, materials, etc. with very small sizes and completely new properties. That opens up new perspectives for technology and is in particular relevant in connection with nano-engineering.Nanosystems are unimaginably small and very fast. No doubt, this is an important characteristic. But there is another feature, possibly more relevant, in connection with nanoscience and nanotechnology. The essential point here is that we work at the 'ultimate level'. This is the smallest level at which the properties of our world emerge, at which functional matter can exist. In particular, at this level biological individuality comes into existence. This situation can be expressed in absolute terms: This is not only the strongest material ever made, this is the strongest material it will ever be possible to make (D Ratner and M Ratner, Nanotechnology and Homeland Security). This is a very general statement. All aspects of matter are concerned here. Through the variation of the composition various forms of matter emerge with different items.Nanosystems are usually small, but they offer nevertheless the possibility to vary the structure of atomic (molecular) ensembles, creating a diversity of new material-specific properties. A large variety of experimental possibilities come into play and flexible theoretical tools are needed at the basic level. This is reflected in the different disciplines: In nanoscience and nanotechnology we have various directions: Materials science, functional nanomaterials, nanoparticles, food chemistry, medicine with brain research, quantum and molecular computing, bioinformatics, magnetic nanostructures, nano-optics, nano-electronics, etc.The properties of matter, which are involved within these nanodisciplines, are ultimate in character, i.e., their characteristic properties come into existence at this level. The book is organized in this respect.

Topics In Nanoscience - Part Ii: Quantized Structures, Nanoelectronics, Thin Films Nanosystems: Typical Results And Future

Topics In Nanoscience - Part Ii: Quantized Structures, Nanoelectronics, Thin Films Nanosystems: Typical Results And Future
Title Topics In Nanoscience - Part Ii: Quantized Structures, Nanoelectronics, Thin Films Nanosystems: Typical Results And Future PDF eBook
Author Wolfram Schommers
Publisher World Scientific
Pages 406
Release 2021-12-17
Genre Science
ISBN 9811243883

Download Topics In Nanoscience - Part Ii: Quantized Structures, Nanoelectronics, Thin Films Nanosystems: Typical Results And Future Book in PDF, Epub and Kindle

With the development of the scanning tunneling microscope, nanoscience became an important discipline. Single atoms could be manipulated in a controlled manner, and it became possible to change matter at its 'ultimate' level; it is the level on which the properties of matter emerge. This possibility enables to construct and to produce devices, materials, etc. with very small sizes and completely new properties. That opens up new perspectives for technology and is in particular relevant in connection with nano-engineering.Nanosystems are unimaginably small and very fast. No doubt, this is an important characteristic. But there is another feature, possibly more relevant, in connection with nanoscience and nanotechnology. The essential point here is that we work at the 'ultimate level'. This is the smallest level at which the properties of our world emerge, at which functional matter can exist. In particular, at this level biological individuality comes into existence. This situation can be expressed in absolute terms: This is not only the strongest material ever made, this is the strongest material it will ever be possible to make (D Ratner and M Ratner, Nanotechnology and Homeland Security). This is a very general statement. All aspects of matter are concerned here. Through the variation of the composition various forms of matter emerge with different items.Nanosystems are usually small, but they offer nevertheless the possibility to vary the structure of atomic (molecular) ensembles, creating a diversity of new material-specific properties. A large variety of experimental possibilities come into play and flexible theoretical tools are needed at the basic level. This is reflected in the different disciplines: In nanoscience and nanotechnology we have various directions: Materials science, functional nanomaterials, nanoparticles, food chemistry, medicine with brain research, quantum and molecular computing, bioinformatics, magnetic nanostructures, nano-optics, nano-electronics, etc.The properties of matter, which are involved within these nanodisciplines, are ultimate in character, i.e., their characteristic properties come into existence at this level. The book is organized in this respect.

Topics In Nanoscience - Part I: Basic Views, Complex Nanosystems: Typical Results And Future

Topics In Nanoscience - Part I: Basic Views, Complex Nanosystems: Typical Results And Future
Title Topics In Nanoscience - Part I: Basic Views, Complex Nanosystems: Typical Results And Future PDF eBook
Author Wolfram Schommers
Publisher World Scientific
Pages 466
Release 2021-12-17
Genre Science
ISBN 9811243875

Download Topics In Nanoscience - Part I: Basic Views, Complex Nanosystems: Typical Results And Future Book in PDF, Epub and Kindle

With the development of the scanning tunneling microscope, nanoscience became an important discipline. Single atoms could be manipulated in a controlled manner, and it became possible to change matter at its 'ultimate' level; it is the level on which the properties of matter emerge. This possibility enables to construct and to produce devices, materials, etc. with very small sizes and completely new properties. That opens up new perspectives for technology and is in particular relevant in connection with nano-engineering.Nanosystems are unimaginably small and very fast. No doubt, this is an important characteristic. But there is another feature, possibly more relevant, in connection with nanoscience and nanotechnology. The essential point here is that we work at the 'ultimate level'. This is the smallest level at which the properties of our world emerge, at which functional matter can exist. In particular, at this level biological individuality comes into existence. This situation can be expressed in absolute terms: This is not only the strongest material ever made, this is the strongest material it will ever be possible to make (D Ratner and M Ratner, Nanotechnology and Homeland Security). This is a very general statement. All aspects of matter are concerned here. Through the variation of the composition various forms of matter emerge with different items.Nanosystems are usually small, but they offer nevertheless the possibility to vary the structure of atomic (molecular) ensembles, creating a diversity of new material-specific properties. A large variety of experimental possibilities come into play and flexible theoretical tools are needed at the basic level. This is reflected in the different disciplines: In nanoscience and nanotechnology we have various directions: Materials science, functional nanomaterials, nanoparticles, food chemistry, medicine with brain research, quantum and molecular computing, bioinformatics, magnetic nanostructures, nano-optics, nano-electronics, etc.The properties of matter, which are involved within these nanodisciplines, are ultimate in character, i.e., their characteristic properties come into existence at this level. The book is organized in this respect.

An Introduction to Nanoscience and Nanotechnology

An Introduction to Nanoscience and Nanotechnology
Title An Introduction to Nanoscience and Nanotechnology PDF eBook
Author Alain Nouailhat
Publisher Wiley-ISTE
Pages 248
Release 2008-01-14
Genre Science
ISBN

Download An Introduction to Nanoscience and Nanotechnology Book in PDF, Epub and Kindle

"Part of this book adapted from "Introduction aux nanosciences et aux nanotechnologies" published in France by Hermes Science/Lavoisier in 2006."

Introduction to Nanoscience

Introduction to Nanoscience
Title Introduction to Nanoscience PDF eBook
Author Stuart Lindsay
Publisher OUP Oxford
Pages 480
Release 2009-10-22
Genre Technology & Engineering
ISBN 0191609277

Download Introduction to Nanoscience Book in PDF, Epub and Kindle

Nanoscience is not physics, chemistry, engineering or biology. It is all of them, and it is time for a text that integrates the disciplines. This is such a text, aimed at advanced undergraduates and beginning graduate students in the sciences. The consequences of smallness and quantum behaviour are well known and described Richard Feynman's visionary essay 'There's Plenty of Room at the Bottom' (which is reproduced in this book). Another, critical, but thus far neglected, aspect of nanoscience is the complexity of nanostructures. Hundreds, thousands or hundreds of thousands of atoms make up systems that are complex enough to show what is fashionably called 'emergent behaviour'. Quite new phenomena arise from rare configurations of the system. Examples are the Kramer's theory of reactions (Chapter 3), the Marcus theory of electron transfer (Chapter 8), and enzyme catalysis, molecular motors, and fluctuations in gene expression and splicing, all covered in the final Chapter on Nanobiology. The book is divided into three parts. Part I (The Basics) is a self-contained introduction to quantum mechanics, statistical mechanics and chemical kinetics, calling on no more than basic college calculus. A conceptual approach and an array of examples and conceptual problems will allow even those without the mathematical tools to grasp much of what is important. Part II (The Tools) covers microscopy, single molecule manipulation and measurement, nanofabrication and self-assembly. Part III (Applications) covers electrons in nanostructures, molecular electronics, nano-materials and nanobiology. Each chapter starts with a survey of the required basics, but ends by making contact with current research literature.

Topics in Nanoscience - Part II: Quantized Structures, Nanoelectronics, Thin Films

Topics in Nanoscience - Part II: Quantized Structures, Nanoelectronics, Thin Films
Title Topics in Nanoscience - Part II: Quantized Structures, Nanoelectronics, Thin Films PDF eBook
Author Wolfram Schommers
Publisher Foundations of Natural Sci
Pages 250
Release 2022-01-31
Genre Science
ISBN 9789811242694

Download Topics in Nanoscience - Part II: Quantized Structures, Nanoelectronics, Thin Films Book in PDF, Epub and Kindle

This introductory compendium teaches engineering students how the most common electronic sensors and actuators work. It distinguishes from other books by including the physical and chemical phenomena used as well as the features and specifications of many sensors and actuators. The useful reference text also contains an introductory chapter that deals with their specifications and classification, a chapter about sensor and actuator networks, and a special topic dealing with the fabrication of sensors and actuators using microelectromechanical systems techniques (sensors and actuators on a chip). A set of exercises and six laboratory projects are highlighted.

Advanced Materials and Nano Systems: Theory and Experiment - Part 2

Advanced Materials and Nano Systems: Theory and Experiment - Part 2
Title Advanced Materials and Nano Systems: Theory and Experiment - Part 2 PDF eBook
Author Dibya Prakash Rai
Publisher Bentham Science Publishers
Pages 299
Release 2022-09-30
Genre Science
ISBN 9815049976

Download Advanced Materials and Nano Systems: Theory and Experiment - Part 2 Book in PDF, Epub and Kindle

The discovery of new materials and the manipulation of their exotic properties for device fabrication is crucial for advancing technology. Nanoscience, and the creation of nanomaterials have taken materials science and electronics to new heights for the benefit of mankind.Advanced Materials and Nanosystems: Theory and Experiment covers several topics of nanoscience research. The compiled chapters aim to update students, teachers, and scientists by highlighting modern developments in materials science theory and experiments. The significant role of new materials in future technology is also demonstrated. The book serves as a reference for curriculum development in technical institutions and research programs in the field of physics, chemistry and applied areas of science like materials science, chemical engineering and electronics. This part covers 12 topics in these areas: - Recent advancements in nanotechnology: a human health Perspective. - An exploratory study on characteristics of SWIRL of AlGaAs/GaAs in advanced bio based nanotechnological systems. - Electronic structure of the half-Heusler ScAuSn, LuAuSn and their superlattice. - Recent trends in nanosystems. - Improvement of performance of single and multicrystalline silicon solar cell using low-temperature surface passivation layer and antireflection coating. - Advanced materials and nanosystems. - Effect of nanostructure-materials on optical properties of some rare earth ions doped in silica matrix. - Nd2Fe14B and SmCO5: a permanent magnet for magnetic data storage and data transfer technology. - Visible light induced photocatalytic activity of MWCNTS decorated sulfide based nano photocatalysts. - Organic solar cells. - Neodymium doped lithium borosilicate glasses. - Comprehensive quantum mechanical study of structural features, reactivity, molecular properties and wave function-based characteristics of capmatinib.