Topics in Infinite Group Theory
Title | Topics in Infinite Group Theory PDF eBook |
Author | Benjamin Fine |
Publisher | Walter de Gruyter GmbH & Co KG |
Pages | 392 |
Release | 2021-08-23 |
Genre | Mathematics |
ISBN | 3110673371 |
This book gives an advanced overview of several topics in infinite group theory. It can also be considered as a rigorous introduction to combinatorial and geometric group theory. The philosophy of the book is to describe the interaction between these two important parts of infinite group theory. In this line of thought, several theorems are proved multiple times with different methods either purely combinatorial or purely geometric while others are shown by a combination of arguments from both perspectives. The first part of the book deals with Nielsen methods and introduces the reader to results and examples that are helpful to understand the following parts. The second part focuses on covering spaces and fundamental groups, including covering space proofs of group theoretic results. The third part deals with the theory of hyperbolic groups. The subjects are illustrated and described by prominent examples and an outlook on solved and unsolved problems.
Infinite Group Theory: From The Past To The Future
Title | Infinite Group Theory: From The Past To The Future PDF eBook |
Author | Paul Baginski |
Publisher | World Scientific |
Pages | 258 |
Release | 2017-12-26 |
Genre | Mathematics |
ISBN | 9813204060 |
The development of algebraic geometry over groups, geometric group theory and group-based cryptography, has led to there being a tremendous recent interest in infinite group theory. This volume presents a good collection of papers detailing areas of current interest.
Topics in Infinite Group Theory
Title | Topics in Infinite Group Theory PDF eBook |
Author | Benjamin Fine |
Publisher | Walter de Gruyter GmbH & Co KG |
Pages | 405 |
Release | 2024-11-18 |
Genre | Mathematics |
ISBN | 311134018X |
This book gives an advanced overview of several topics in infinite group theory. It can also be considered as a rigorous introduction to combinatorial and geometric group theory. The philosophy of the book is to describe the interaction between these two important parts of infinite group theory. In this line of thought, several theorems are proved multiple times with different methods either purely combinatorial or purely geometric while others are shown by a combination of arguments from both perspectives. The first part of the book deals with Nielsen methods and introduces the reader to results and examples that are helpful to understand the following parts. The second part focuses on covering spaces and fundamental groups, including covering space proofs of group theoretic results. The third part deals with the theory of hyperbolic groups. The subjects are illustrated and described by prominent examples and an outlook on solved and unsolved problems. New edition now includes the topics on universal free groups, quasiconvex subgroups and hyperbolic groups, and also Stallings foldings and subgroups of free groups. New results on groups of F-types are added.
Topics in Geometric Group Theory
Title | Topics in Geometric Group Theory PDF eBook |
Author | Pierre de la Harpe |
Publisher | University of Chicago Press |
Pages | 320 |
Release | 2000-10-15 |
Genre | Education |
ISBN | 9780226317199 |
In this book, Pierre de la Harpe provides a concise and engaging introduction to geometric group theory, a new method for studying infinite groups via their intrinsic geometry that has played a major role in mathematics over the past two decades. A recognized expert in the field, de la Harpe adopts a hands-on approach, illustrating key concepts with numerous concrete examples. The first five chapters present basic combinatorial and geometric group theory in a unique and refreshing way, with an emphasis on finitely generated versus finitely presented groups. In the final three chapters, de la Harpe discusses new material on the growth of groups, including a detailed treatment of the "Grigorchuk group." Most sections are followed by exercises and a list of problems and complements, enhancing the book's value for students; problems range from slightly more difficult exercises to open research problems in the field. An extensive list of references directs readers to more advanced results as well as connections with other fields.
Algebra IV
Title | Algebra IV PDF eBook |
Author | A.I. Kostrikin |
Publisher | Springer Science & Business Media |
Pages | 210 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 3662028697 |
Group theory is one of the most fundamental branches of mathematics. This highly accessible volume of the Encyclopaedia is devoted to two important subjects within this theory. Extremely useful to all mathematicians, physicists and other scientists, including graduate students who use group theory in their work.
Groups
Title | Groups PDF eBook |
Author | Antonio Machì |
Publisher | Springer Science & Business Media |
Pages | 385 |
Release | 2012-04-05 |
Genre | Mathematics |
ISBN | 8847024218 |
Groups are a means of classification, via the group action on a set, but also the object of a classification. How many groups of a given type are there, and how can they be described? Hölder’s program for attacking this problem in the case of finite groups is a sort of leitmotiv throughout the text. Infinite groups are also considered, with particular attention to logical and decision problems. Abelian, nilpotent and solvable groups are studied both in the finite and infinite case. Permutation groups and are treated in detail; their relationship with Galois theory is often taken into account. The last two chapters deal with the representation theory of finite group and the cohomology theory of groups; the latter with special emphasis on the extension problem. The sections are followed by exercises; hints to the solution are given, and for most of them a complete solution is provided.
Topics in Group Theory
Title | Topics in Group Theory PDF eBook |
Author | Geoff Smith |
Publisher | Springer Science & Business Media |
Pages | 266 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 1447104617 |
The theory of groups is simultaneously a branch of abstract algebra and the study of symmetry. Designed for readers approaching the subject for the first time, this book reviews all the essentials. It recaps the basic definitions and results, including Lagranges Theorem, the isomorphism theorems and group actions. Later chapters include material on chain conditions and finiteness conditions, free groups and the theory of presentations. In addition, a novel chapter of "entertainments" demonstrates an assortment of results that can be achieved with the theoretical machinery.