Cohomology of Groups
Title | Cohomology of Groups PDF eBook |
Author | Kenneth S. Brown |
Publisher | Springer Science & Business Media |
Pages | 318 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 1468493272 |
Aimed at second year graduate students, this text introduces them to cohomology theory (involving a rich interplay between algebra and topology) with a minimum of prerequisites. No homological algebra is assumed beyond what is normally learned in a first course in algebraic topology, and the basics of the subject, as well as exercises, are given prior to discussion of more specialized topics.
Topics in Cohomology of Groups
Title | Topics in Cohomology of Groups PDF eBook |
Author | Serge Lang |
Publisher | |
Pages | 236 |
Release | 2014-09-01 |
Genre | |
ISBN | 9783662198001 |
Topics in Cohomological Studies of Algebraic Varieties
Title | Topics in Cohomological Studies of Algebraic Varieties PDF eBook |
Author | Piotr Pragacz |
Publisher | Springer Science & Business Media |
Pages | 321 |
Release | 2006-03-30 |
Genre | Mathematics |
ISBN | 3764373423 |
The articles in this volume study various cohomological aspects of algebraic varieties: - characteristic classes of singular varieties; - geometry of flag varieties; - cohomological computations for homogeneous spaces; - K-theory of algebraic varieties; - quantum cohomology and Gromov-Witten theory. The main purpose is to give comprehensive introductions to the above topics through a series of "friendly" texts starting from a very elementary level and ending with the discussion of current research. In the articles, the reader will find classical results and methods as well as new ones. Numerous examples will help to understand the mysteries of the cohomological theories presented. The book will be a useful guide to research in the above-mentioned areas. It is adressed to researchers and graduate students in algebraic geometry, algebraic topology, and singularity theory, as well as to mathematicians interested in homogeneous varieties and symmetric functions. Most of the material exposed in the volume has not appeared in books before. Contributors: Paolo Aluffi Michel Brion Anders Skovsted Buch Haibao Duan Ali Ulas Ozgur Kisisel Piotr Pragacz Jörg Schürmann Marek Szyjewski Harry Tamvakis
Cohomology of Number Fields
Title | Cohomology of Number Fields PDF eBook |
Author | Jürgen Neukirch |
Publisher | Springer Science & Business Media |
Pages | 831 |
Release | 2013-09-26 |
Genre | Mathematics |
ISBN | 3540378898 |
This second edition is a corrected and extended version of the first. It is a textbook for students, as well as a reference book for the working mathematician, on cohomological topics in number theory. In all it is a virtually complete treatment of a vast array of central topics in algebraic number theory. New material is introduced here on duality theorems for unramified and tamely ramified extensions as well as a careful analysis of 2-extensions of real number fields.
Bounded Cohomology of Discrete Groups
Title | Bounded Cohomology of Discrete Groups PDF eBook |
Author | Roberto Frigerio |
Publisher | American Mathematical Soc. |
Pages | 213 |
Release | 2017-11-21 |
Genre | Mathematics |
ISBN | 1470441462 |
The theory of bounded cohomology, introduced by Gromov in the late 1980s, has had powerful applications in geometric group theory and the geometry and topology of manifolds, and has been the topic of active research continuing to this day. This monograph provides a unified, self-contained introduction to the theory and its applications, making it accessible to a student who has completed a first course in algebraic topology and manifold theory. The book can be used as a source for research projects for master's students, as a thorough introduction to the field for graduate students, and as a valuable landmark text for researchers, providing both the details of the theory of bounded cohomology and links of the theory to other closely related areas. The first part of the book is devoted to settling the fundamental definitions of the theory, and to proving some of the (by now classical) results on low-dimensional bounded cohomology and on bounded cohomology of topological spaces. The second part describes applications of the theory to the study of the simplicial volume of manifolds, to the classification of circle actions, to the analysis of maximal representations of surface groups, and to the study of flat vector bundles with a particular emphasis on the possible use of bounded cohomology in relation with the Chern conjecture. Each chapter ends with a discussion of further reading that puts the presented results in a broader context.
Cohomology of Finite Groups
Title | Cohomology of Finite Groups PDF eBook |
Author | Alejandro Adem |
Publisher | Springer Science & Business Media |
Pages | 333 |
Release | 2013-06-29 |
Genre | Mathematics |
ISBN | 3662062828 |
The cohomology of groups has, since its beginnings in the 1920s and 1930s, been the stage for significant interaction between algebra and topology and has led to the creation of important new fields in mathematics, like homological algebra and algebraic K-theory. This is the first book to deal comprehensively with the cohomology of finite groups: it introduces the most important and useful algebraic and topological techniques, and describes the interplay of the subject with those of homotopy theory, representation theory and group actions. The combination of theory and examples, together with the techniques for computing the cohomology of important classes of groups including symmetric groups, alternating groups, finite groups of Lie type, and some of the sporadic simple groups, enable readers to acquire an in-depth understanding of group cohomology and its extensive applications.
Galois Cohomology and Class Field Theory
Title | Galois Cohomology and Class Field Theory PDF eBook |
Author | David Harari |
Publisher | Springer Nature |
Pages | 336 |
Release | 2020-06-24 |
Genre | Mathematics |
ISBN | 3030439011 |
This graduate textbook offers an introduction to modern methods in number theory. It gives a complete account of the main results of class field theory as well as the Poitou-Tate duality theorems, considered crowning achievements of modern number theory. Assuming a first graduate course in algebra and number theory, the book begins with an introduction to group and Galois cohomology. Local fields and local class field theory, including Lubin-Tate formal group laws, are covered next, followed by global class field theory and the description of abelian extensions of global fields. The final part of the book gives an accessible yet complete exposition of the Poitou-Tate duality theorems. Two appendices cover the necessary background in homological algebra and the analytic theory of Dirichlet L-series, including the Čebotarev density theorem. Based on several advanced courses given by the author, this textbook has been written for graduate students. Including complete proofs and numerous exercises, the book will also appeal to more experienced mathematicians, either as a text to learn the subject or as a reference.