Topics in Applied Multivariate Analysis
Title | Topics in Applied Multivariate Analysis PDF eBook |
Author | D. M. Hawkins |
Publisher | Cambridge University Press |
Pages | 384 |
Release | 1982-04-22 |
Genre | Mathematics |
ISBN | 9780521243681 |
Multivariate methods are employed widely in the analysis of experimental data but are poorly understood by those users who are not statisticians. This is because of the wide divergence between the theory and practice of multivariate methods. This book provides concise yet thorough surveys of developments in multivariate statistical analysis and gives statistically sound coverage of the subject. The contributors are all experienced in the theory and practice of multivariate methods and their aim has been to emphasize the major features from the point of view of applicability and to indicate the limitations and conditions of the techniques. Professional statisticians wanting to improve their background in applicable methods, users of high-level statistical methods wanting to improve their background in fundamentals, and graduate students of statistics will all find this volume of value and use.
An Introduction to Applied Multivariate Analysis
Title | An Introduction to Applied Multivariate Analysis PDF eBook |
Author | Tenko Raykov |
Publisher | Routledge |
Pages | 514 |
Release | 2008-03-10 |
Genre | Business & Economics |
ISBN | 113667599X |
This comprehensive text introduces readers to the most commonly used multivariate techniques at an introductory, non-technical level. By focusing on the fundamentals, readers are better prepared for more advanced applied pursuits, particularly on topics that are most critical to the behavioral, social, and educational sciences. Analogies betwe
Applied Multivariate Research
Title | Applied Multivariate Research PDF eBook |
Author | Lawrence S. Meyers |
Publisher | SAGE Publications |
Pages | 938 |
Release | 2016-10-28 |
Genre | Social Science |
ISBN | 1506329780 |
Using a conceptual, non-mathematical approach, the updated Third Edition provides full coverage of the wide range of multivariate topics that graduate students across the social and behavioral sciences encounter. Authors Lawrence S. Meyers, Glenn Gamst, and A. J. Guarino integrate innovative multicultural topics in examples throughout the book, which include both conceptual and practical coverage of: statistical techniques of data screening; multiple regression; multilevel modeling; exploratory factor analysis; discriminant analysis; structural equation modeling; structural equation modeling invariance; survival analysis; multidimensional scaling; and cluster analysis.
An Introduction to Applied Multivariate Analysis with R
Title | An Introduction to Applied Multivariate Analysis with R PDF eBook |
Author | Brian Everitt |
Publisher | Springer Science & Business Media |
Pages | 284 |
Release | 2011-04-23 |
Genre | Mathematics |
ISBN | 1441996508 |
The majority of data sets collected by researchers in all disciplines are multivariate, meaning that several measurements, observations, or recordings are taken on each of the units in the data set. These units might be human subjects, archaeological artifacts, countries, or a vast variety of other things. In a few cases, it may be sensible to isolate each variable and study it separately, but in most instances all the variables need to be examined simultaneously in order to fully grasp the structure and key features of the data. For this purpose, one or another method of multivariate analysis might be helpful, and it is with such methods that this book is largely concerned. Multivariate analysis includes methods both for describing and exploring such data and for making formal inferences about them. The aim of all the techniques is, in general sense, to display or extract the signal in the data in the presence of noise and to find out what the data show us in the midst of their apparent chaos. An Introduction to Applied Multivariate Analysis with R explores the correct application of these methods so as to extract as much information as possible from the data at hand, particularly as some type of graphical representation, via the R software. Throughout the book, the authors give many examples of R code used to apply the multivariate techniques to multivariate data.
Applied Multivariate Statistical Analysis
Title | Applied Multivariate Statistical Analysis PDF eBook |
Author | Wolfgang Karl Härdle |
Publisher | Springer Nature |
Pages | 611 |
Release | |
Genre | |
ISBN | 3031638336 |
Applied Multivariate Data Analysis
Title | Applied Multivariate Data Analysis PDF eBook |
Author | J.D. Jobson |
Publisher | Springer Science & Business Media |
Pages | 646 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 1461209552 |
An easy to read survey of data analysis, linear regression models and analysis of variance. The extensive development of the linear model includes the use of the linear model approach to analysis of variance provides a strong link to statistical software packages, and is complemented by a thorough overview of theory. It is assumed that the reader has the background equivalent to an introductory book in statistical inference. Can be read easily by those who have had brief exposure to calculus and linear algebra. Intended for first year graduate students in business, social and the biological sciences. Provides the student with the necessary statistics background for a course in research methodology. In addition, undergraduate statistics majors will find this text useful as a survey of linear models and their applications.
Applied Multivariate Statistics with R
Title | Applied Multivariate Statistics with R PDF eBook |
Author | Daniel Zelterman |
Publisher | Springer Nature |
Pages | 469 |
Release | 2023-01-20 |
Genre | Medical |
ISBN | 3031130057 |
Now in its second edition, this book brings multivariate statistics to graduate-level practitioners, making these analytical methods accessible without lengthy mathematical derivations. Using the open source shareware program R, Dr. Zelterman demonstrates the process and outcomes for a wide array of multivariate statistical applications. Chapters cover graphical displays; linear algebra; univariate, bivariate and multivariate normal distributions; factor methods; linear regression; discrimination and classification; clustering; time series models; and additional methods. He uses practical examples from diverse disciplines, to welcome readers from a variety of academic specialties. Each chapter includes exercises, real data sets, and R implementations. The book avoids theoretical derivations beyond those needed to fully appreciate the methods. Prior experience with R is not necessary. New to this edition are chapters devoted to longitudinal studies and the clustering of large data. It is an excellent resource for students of multivariate statistics, as well as practitioners in the health and life sciences who are looking to integrate statistics into their work.