Topics in Algebraic Graph Theory
Title | Topics in Algebraic Graph Theory PDF eBook |
Author | Lowell W. Beineke |
Publisher | Cambridge University Press |
Pages | 302 |
Release | 2004-10-04 |
Genre | Mathematics |
ISBN | 9780521801973 |
There is no other book with such a wide scope of both areas of algebraic graph theory.
Algebraic Graph Theory
Title | Algebraic Graph Theory PDF eBook |
Author | Chris Godsil |
Publisher | Springer Science & Business Media |
Pages | 453 |
Release | 2013-12-01 |
Genre | Mathematics |
ISBN | 1461301637 |
This book presents and illustrates the main tools and ideas of algebraic graph theory, with a primary emphasis on current rather than classical topics. It is designed to offer self-contained treatment of the topic, with strong emphasis on concrete examples.
Graphs and Matrices
Title | Graphs and Matrices PDF eBook |
Author | Ravindra B. Bapat |
Publisher | Springer |
Pages | 197 |
Release | 2014-09-19 |
Genre | Mathematics |
ISBN | 1447165691 |
This new edition illustrates the power of linear algebra in the study of graphs. The emphasis on matrix techniques is greater than in other texts on algebraic graph theory. Important matrices associated with graphs (for example, incidence, adjacency and Laplacian matrices) are treated in detail. Presenting a useful overview of selected topics in algebraic graph theory, early chapters of the text focus on regular graphs, algebraic connectivity, the distance matrix of a tree, and its generalized version for arbitrary graphs, known as the resistance matrix. Coverage of later topics include Laplacian eigenvalues of threshold graphs, the positive definite completion problem and matrix games based on a graph. Such an extensive coverage of the subject area provides a welcome prompt for further exploration. The inclusion of exercises enables practical learning throughout the book. In the new edition, a new chapter is added on the line graph of a tree, while some results in Chapter 6 on Perron-Frobenius theory are reorganized. Whilst this book will be invaluable to students and researchers in graph theory and combinatorial matrix theory, it will also benefit readers in the sciences and engineering.
Algebraic Graph Theory
Title | Algebraic Graph Theory PDF eBook |
Author | Ulrich Knauer |
Publisher | Walter de Gruyter |
Pages | 325 |
Release | 2011-09-29 |
Genre | Mathematics |
ISBN | 311025509X |
Graph models are extremely useful for almost all applications and applicators as they play an important role as structuring tools. They allow to model net structures – like roads, computers, telephones – instances of abstract data structures – like lists, stacks, trees – and functional or object oriented programming. In turn, graphs are models for mathematical objects, like categories and functors. This highly self-contained book about algebraic graph theory is written with a view to keep the lively and unconventional atmosphere of a spoken text to communicate the enthusiasm the author feels about this subject. The focus is on homomorphisms and endomorphisms, matrices and eigenvalues. It ends with a challenging chapter on the topological question of embeddability of Cayley graphs on surfaces.
Topics in Topological Graph Theory
Title | Topics in Topological Graph Theory PDF eBook |
Author | Lowell W. Beineke |
Publisher | Cambridge University Press |
Pages | 387 |
Release | 2009-07-09 |
Genre | Mathematics |
ISBN | 1139643681 |
The use of topological ideas to explore various aspects of graph theory, and vice versa, is a fruitful area of research. There are links with other areas of mathematics, such as design theory and geometry, and increasingly with such areas as computer networks where symmetry is an important feature. Other books cover portions of the material here, but there are no other books with such a wide scope. This book contains fifteen expository chapters written by acknowledged international experts in the field. Their well-written contributions have been carefully edited to enhance readability and to standardize the chapter structure, terminology and notation throughout the book. To help the reader, there is an extensive introductory chapter that covers the basic background material in graph theory and the topology of surfaces. Each chapter concludes with an extensive list of references.
Topics in Structural Graph Theory
Title | Topics in Structural Graph Theory PDF eBook |
Author | Lowell W. Beineke |
Publisher | Cambridge University Press |
Pages | 346 |
Release | 2012-11-08 |
Genre | Mathematics |
ISBN | 1107244307 |
The rapidly expanding area of structural graph theory uses ideas of connectivity to explore various aspects of graph theory and vice versa. It has links with other areas of mathematics, such as design theory and is increasingly used in such areas as computer networks where connectivity algorithms are an important feature. Although other books cover parts of this material, none has a similarly wide scope. Ortrud R. Oellermann (Winnipeg), internationally recognised for her substantial contributions to structural graph theory, acted as academic consultant for this volume, helping shape its coverage of key topics. The result is a collection of thirteen expository chapters, each written by acknowledged experts. These contributions have been carefully edited to enhance readability and to standardise the chapter structure, terminology and notation throughout. An introductory chapter details the background material in graph theory and network flows and each chapter concludes with an extensive list of references.
Modern Graph Theory
Title | Modern Graph Theory PDF eBook |
Author | Bela Bollobas |
Publisher | Springer Science & Business Media |
Pages | 408 |
Release | 2013-12-01 |
Genre | Mathematics |
ISBN | 1461206197 |
An in-depth account of graph theory, written for serious students of mathematics and computer science. It reflects the current state of the subject and emphasises connections with other branches of pure mathematics. Recognising that graph theory is one of several courses competing for the attention of a student, the book contains extensive descriptive passages designed to convey the flavour of the subject and to arouse interest. In addition to a modern treatment of the classical areas of graph theory, the book presents a detailed account of newer topics, including Szemerédis Regularity Lemma and its use, Shelahs extension of the Hales-Jewett Theorem, the precise nature of the phase transition in a random graph process, the connection between electrical networks and random walks on graphs, and the Tutte polynomial and its cousins in knot theory. Moreover, the book contains over 600 well thought-out exercises: although some are straightforward, most are substantial, and some will stretch even the most able reader.