CMS Pixel Detector Upgrade and Top Quark Pole Mass Determination

CMS Pixel Detector Upgrade and Top Quark Pole Mass Determination
Title CMS Pixel Detector Upgrade and Top Quark Pole Mass Determination PDF eBook
Author Simon Spannagel
Publisher Springer
Pages 286
Release 2017-08-01
Genre Science
ISBN 331958880X

Download CMS Pixel Detector Upgrade and Top Quark Pole Mass Determination Book in PDF, Epub and Kindle

This thesis addresses two different topics, both vital for implementing modern high-energy physics experiments: detector development and data analysis. Providing a concise introduction to both the standard model of particle physics and the basic principles of semiconductor tracking detectors, it presents the first measurement of the top quark pole mass from the differential cross-section of tt+J events in the dileptonic tt decay channel. The first part focuses on the development and characterization of silicon pixel detectors. To account for the expected increase in luminosity of the Large Hadron Collider (LHC), the pixel detector of the compact muon solenoid (CMS) experiment is replaced by an upgraded detector with new front-end electronics. It presents comprehensive test beam studies conducted to verify the design and quantify the performance of the new front-end in terms of tracking efficiency and spatial resolution. Furthermore, it proposes a new cluster interpolation method, which utilizes the third central moment of the cluster charge distribution to improve the position resolution. The second part of the thesis introduces an alternative measurement of the top quark mass from the normalized differential production cross-sections of dileptonic top quark pair events with an additional jet. The energy measurement is 8TeV. Using theoretical predictions at next-to-leading order in perturbative Quantum Chromodynamics (QCD), the top quark pole mass is determined using a template fit method.

Spin Correlations in tt Events from pp Collisions

Spin Correlations in tt Events from pp Collisions
Title Spin Correlations in tt Events from pp Collisions PDF eBook
Author Boris Lemmer
Publisher Springer
Pages 246
Release 2015-06-24
Genre Science
ISBN 3319189328

Download Spin Correlations in tt Events from pp Collisions Book in PDF, Epub and Kindle

This thesis introduces readers to the Standard Model, the top quark and its properties, before explaining the concept of spin correlation measurement. The first measurement of top quark spin correlations at the LHC in the lepton+jets decay channel is presented. As the heaviest elementary particle, the top quark plays an essential role in the Standard Model of elementary particle physics. In the case of top quarks being produced in pairs at hadron colliders, the Standard Model predicts their spins to be correlated. The degree of correlation depends on both the production mechanism and properties of the top quark. Any deviation from the Standard Model prediction can be an indicator for new physics phenomena. The thesis employs an advanced top quark reconstruction algorithm including dedicated identification of the up- and down-type quarks from the W boson decay.

Top Quark Spin Correlations with the CMS Detector

Top Quark Spin Correlations with the CMS Detector
Title Top Quark Spin Correlations with the CMS Detector PDF eBook
Author JASON R. THIEMAN
Publisher Springer
Pages 0
Release 2024-12-02
Genre Science
ISBN 9783031761164

Download Top Quark Spin Correlations with the CMS Detector Book in PDF, Epub and Kindle

Physics at the Large Hadron Collider

Physics at the Large Hadron Collider
Title Physics at the Large Hadron Collider PDF eBook
Author Amitava Datta
Publisher Springer Science & Business Media
Pages 260
Release 2010-05-30
Genre Science
ISBN 8184892950

Download Physics at the Large Hadron Collider Book in PDF, Epub and Kindle

In an epoch when particle physics is awaiting a major step forward, the Large Hydron Collider (LHC) at CERN, Geneva will soon be operational. It will collide a beam of high energy protons with another similar beam circulation in the same 27 km tunnel but in the opposite direction, resulting in the production of many elementary particles some never created in the laboratory before. It is widely expected that the LHC will discover the Higgs boson, the particle which supposedly lends masses to all other fundamental particles. In addition, the question as to whether there is some new law of physics at such high energy is likely to be answered through this experiment. The present volume contains a collection of articles written by international experts, both theoreticians and experimentalists, from India and abroad, which aims to acquaint a non-specialist with some basic issues related to the LHC. At the same time, it is expected to be a useful, rudimentary companion of introductory exposition and technical expertise alike, and it is hoped to become unique in its kind. The fact that there is substantial Indian involvement in the entire LHC endeavour, at all levels including fabrication, physics analysis procedures as well as theoretical studies, is also amply brought out in the collection.

Top-Quark Pair Production Cross Sections and Calibration of the Top-Quark Monte-Carlo Mass

Top-Quark Pair Production Cross Sections and Calibration of the Top-Quark Monte-Carlo Mass
Title Top-Quark Pair Production Cross Sections and Calibration of the Top-Quark Monte-Carlo Mass PDF eBook
Author Jan Kieseler
Publisher Springer
Pages 172
Release 2016-06-15
Genre Science
ISBN 3319400053

Download Top-Quark Pair Production Cross Sections and Calibration of the Top-Quark Monte-Carlo Mass Book in PDF, Epub and Kindle

This thesis presents the first experimental calibration of the top-quark Monte-Carlo mass. It also provides the top-quark mass-independent and most precise top-quark pair production cross-section measurement to date. The most precise measurements of the top-quark mass obtain the top-quark mass parameter (Monte-Carlo mass) used in simulations, which are partially based on heuristic models. Its interpretation in terms of mass parameters used in theoretical calculations, e.g. a running or a pole mass, has been a long-standing open problem with far-reaching implications beyond particle physics, even affecting conclusions on the stability of the vacuum state of our universe. In this thesis, this problem is solved experimentally in three steps using data obtained with the compact muon solenoid (CMS) detector. The most precise top-quark pair production cross-section measurements to date are performed. The Monte-Carlo mass is determined and a new method for extracting the top-quark mass from theoretical calculations is presented. Lastly, the top-quark production cross-sections are obtained – for the first time – without residual dependence on the top-quark mass, are interpreted using theoretical calculations to determine the top-quark running- and pole mass with unprecedented precision, and are fully consistently compared with the simultaneously obtained top-quark Monte-Carlo mass.

Top Quark Physics at Hadron Colliders

Top Quark Physics at Hadron Colliders
Title Top Quark Physics at Hadron Colliders PDF eBook
Author Arnulf Quadt
Publisher Springer Science & Business Media
Pages 166
Release 2007-08-16
Genre Science
ISBN 3540710604

Download Top Quark Physics at Hadron Colliders Book in PDF, Epub and Kindle

This will be a required acquisition text for academic libraries. More than ten years after its discovery, still relatively little is known about the top quark, the heaviest known elementary particle. This extensive survey summarizes and reviews top-quark physics based on the precision measurements at the Fermilab Tevatron Collider, as well as examining in detail the sensitivity of these experiments to new physics. Finally, the author provides an overview of top quark physics at the Large Hadron Collider.

Fundamental Interactions

Fundamental Interactions
Title Fundamental Interactions PDF eBook
Author A. Astbury
Publisher World Scientific
Pages 397
Release 2006
Genre Science
ISBN 9812703675

Download Fundamental Interactions Book in PDF, Epub and Kindle

This proceedings volume contains the latest developments in particle physics in collider experiments. The contributions cover new results such as the production of quark-gluon plasma in the heavy-ion collider, the new techniques for precision measurement at low energies, and the status of neutrino physics at various laboratories including the new facilities that are at the planning stage.