Tissue Inhomogeneity Corrections for Megalovoltage Photon Beams
Title | Tissue Inhomogeneity Corrections for Megalovoltage Photon Beams PDF eBook |
Author | |
Publisher | |
Pages | 135 |
Release | 2004 |
Genre | Photon beams |
ISBN | 9781888340471 |
Perez and Brady's Principles and Practice of Radiation Oncology
Title | Perez and Brady's Principles and Practice of Radiation Oncology PDF eBook |
Author | Edward C. Halperin |
Publisher | Lippincott Williams & Wilkins |
Pages | 2152 |
Release | 2008 |
Genre | Medical |
ISBN | 9780781763691 |
The thoroughly updated fifth edition of this landmark work has been extensively revised to better represent the rapidly changing field of radiation oncology and to provide an understanding of the many aspects of radiation oncology. This edition places greater emphasis on use of radiation treatment in palliative and supportive care as well as therapy.
Radiation Oncology Physics
Title | Radiation Oncology Physics PDF eBook |
Author | International Atomic Energy Agency |
Publisher | IAEA |
Pages | 704 |
Release | 2005 |
Genre | Business & Economics |
ISBN |
This publication is aimed at students and teachers involved in teaching programmes in field of medical radiation physics, and it covers the basic medical physics knowledge required in the form of a syllabus for modern radiation oncology. The information will be useful to those preparing for professional certification exams in radiation oncology, medical physics, dosimetry or radiotherapy technology.
World Congress on Medical Physics and Biomedical Engineering September 7 - 12, 2009 Munich, Germany
Title | World Congress on Medical Physics and Biomedical Engineering September 7 - 12, 2009 Munich, Germany PDF eBook |
Author | Olaf Dössel |
Publisher | Springer Science & Business Media |
Pages | 1112 |
Release | 2010-01-01 |
Genre | Technology & Engineering |
ISBN | 3642034748 |
Present Your Research to the World! The World Congress 2009 on Medical Physics and Biomedical Engineering – the triennial scientific meeting of the IUPESM - is the world’s leading forum for presenting the results of current scientific work in health-related physics and technologies to an international audience. With more than 2,800 presentations it will be the biggest conference in the fields of Medical Physics and Biomedical Engineering in 2009! Medical physics, biomedical engineering and bioengineering have been driving forces of innovation and progress in medicine and healthcare over the past two decades. As new key technologies arise with significant potential to open new options in diagnostics and therapeutics, it is a multidisciplinary task to evaluate their benefit for medicine and healthcare with respect to the quality of performance and therapeutic output. Covering key aspects such as information and communication technologies, micro- and nanosystems, optics and biotechnology, the congress will serve as an inter- and multidisciplinary platform that brings together people from basic research, R&D, industry and medical application to discuss these issues. As a major event for science, medicine and technology the congress provides a comprehensive overview and in–depth, first-hand information on new developments, advanced technologies and current and future applications. With this Final Program we would like to give you an overview of the dimension of the congress and invite you to join us in Munich! Olaf Dössel Congress President Wolfgang C.
The Modern Technology of Radiation Oncology
Title | The Modern Technology of Radiation Oncology PDF eBook |
Author | Jake Van Dyk |
Publisher | Medical Physics Publishing Corporation |
Pages | 1106 |
Release | 1999 |
Genre | Medical |
ISBN |
Details technology associated with radiation oncology, emphasizing design of all equipment allied with radiation treatment. Describes procedures required to implement equipment in clinical service, covering needs assessment, purchase, acceptance, and commissioning, and explains quality assurance issues. Also addresses less common and evolving technologies. For medical physicists and radiation oncologists, as well as radiation therapists, dosimetrists, and engineering technologists. Includes bandw medical images and photos of equipment. Paper edition (unseen), $145.95. Annotation copyrighted by Book News, Inc., Portland, OR
Introduction to Megavoltage X-Ray Dose Computation Algorithms
Title | Introduction to Megavoltage X-Ray Dose Computation Algorithms PDF eBook |
Author | Jerry Battista |
Publisher | CRC Press |
Pages | 448 |
Release | 2019-01-04 |
Genre | Science |
ISBN | 1351676148 |
Read an exclusive interview with Dr. Jerry Battista here. A critical element of radiation treatment planning for cancer is the accurate prediction and delivery of a tailored radiation dose distribution inside the patient. Megavoltage x-ray beams are aimed at the tumour, while collateral damage to nearby healthy tissue and organs is minimized. The key to optimal treatment therefore lies in adopting a trustworthy three-dimensional (3D) dose computation algorithm, which simulates the passage of both primary and secondary radiation throughout the exposed tissue. Edited by an award-winning university educator and pioneer in the field of voxel-based radiation dose computation, this book explores the physics and mathematics that underlie algorithms encountered in contemporary radiation oncology. It is an invaluable reference for clinical physicists who commission, develop, or test treatment planning software. This book also covers a core topic in the syllabus for educating graduate students and residents entering the field of clinical physics. This book starts with a historical perspective gradually building up to the three most important algorithms used for today’s clinical applications. These algorithms can solve the same general radiation transport problem from three vantages: firstly, applying convolution-superposition principles (i.e. Green’s method); secondly, the stochastic simulation of radiation particle interactions with tissue atoms (i.e. the Monte Carlo method); and thirdly, the deterministic solution of the fundamental equations for radiation fields of x-rays and their secondary particles (i.e. the Boltzmann method). It contains clear, original illustrations of key concepts and quantities thoughout, supplemented by metaphors and analogies to facilitate comprehension and retention of knowledge. Features: Edited by an authority in the field, enhanced with chapter contributions from physicists with clinical experience in the fields of computational dosimetry and dose optimization Contains examples of test phantom results and clinical cases, illustrating pitfalls to avoid in clinical applications to radiation oncology Introduces four-dimensional (4D) dose computation, on-line dose reconstruction, and dose accumulation that accounts for tissue displacements and motion throughout a course of radiation therapy
The Physics of Radiation Therapy
Title | The Physics of Radiation Therapy PDF eBook |
Author | Faiz M. Khan |
Publisher | Lippincott Williams & Wilkins |
Pages | 576 |
Release | 2012-03-28 |
Genre | Medical |
ISBN | 1451149131 |
Dr. Khan's classic textbook on radiation oncology physics is now in its thoroughly revised and updated Fourth Edition. It provides the entire radiation therapy team—radiation oncologists, medical physicists, dosimetrists, and radiation therapists—with a thorough understanding of the physics and practical clinical applications of advanced radiation therapy technologies, including 3D-CRT, stereotactic radiotherapy, HDR, IMRT, IGRT, and proton beam therapy. These technologies are discussed along with the physical concepts underlying treatment planning, treatment delivery, and dosimetry. This Fourth Edition includes brand-new chapters on image-guided radiation therapy (IGRT) and proton beam therapy. Other chapters have been revised to incorporate the most recent developments in the field. This edition also features more than 100 full-color illustrations throughout. A companion Website will offer the fully searchable text and an image bank.