Timing Analysis and Optimization of Sequential Circuits
Title | Timing Analysis and Optimization of Sequential Circuits PDF eBook |
Author | Naresh Maheshwari |
Publisher | Springer Science & Business Media |
Pages | 202 |
Release | 2012-12-06 |
Genre | Technology & Engineering |
ISBN | 1461556376 |
Recent years have seen rapid strides in the level of sophistication of VLSI circuits. On the performance front, there is a vital need for techniques to design fast, low-power chips with minimum area for increasingly complex systems, while on the economic side there is the vastly increased pressure of time-to-market. These pressures have made the use of CAD tools mandatory in designing complex systems. Timing Analysis and Optimization of Sequential Circuits describes CAD algorithms for analyzing and optimizing the timing behavior of sequential circuits with special reference to performance parameters such as power and area. A unified approach to performance analysis and optimization of sequential circuits is presented. The state of the art in timing analysis and optimization techniques is described for circuits using edge-triggered or level-sensitive memory elements. Specific emphasis is placed on two methods that are true sequential timing optimizations techniques: retiming and clock skew optimization. Timing Analysis and Optimization of Sequential Circuits covers the following topics: Algorithms for sequential timing analysis Fast algorithms for clock skew optimization and their applications Efficient techniques for retiming large sequential circuits Coupling sequential and combinational optimizations. Timing Analysis and Optimization of Sequential Circuits is written for graduate students, researchers and professionals in the area of CAD for VLSI and VLSI circuit design.
Timing
Title | Timing PDF eBook |
Author | Sachin Sapatnekar |
Publisher | Springer Science & Business Media |
Pages | 301 |
Release | 2007-05-08 |
Genre | Technology & Engineering |
ISBN | 1402080220 |
Statistical timing analysis is an area of growing importance in nanometer te- nologies‚ as the uncertainties associated with process and environmental var- tions increase‚ and this chapter has captured some of the major efforts in this area. This remains a very active field of research‚ and there is likely to be a great deal of new research to be found in conferences and journals after this book is published. In addition to the statistical analysis of combinational circuits‚ a good deal of work has been carried out in analyzing the effect of variations on clock skew. Although we will not treat this subject in this book‚ the reader is referred to [LNPS00‚ HN01‚ JH01‚ ABZ03a] for details. 7 TIMING ANALYSIS FOR SEQUENTIAL CIRCUITS 7.1 INTRODUCTION A general sequential circuit is a network of computational nodes (gates) and memory elements (registers). The computational nodes may be conceptualized as being clustered together in an acyclic network of gates that forms a c- binational logic circuit. A cyclic path in the direction of signal propagation 1 is permitted in the sequential circuit only if it contains at least one register . In general, it is possible to represent any sequential circuit in terms of the schematic shown in Figure 7.1, which has I inputs, O outputs and M registers. The registers outputs feed into the combinational logic which, in turn, feeds the register inputs. Thus, the combinational logic has I + M inputs and O + M outputs.
Handbook of Algorithms for Physical Design Automation
Title | Handbook of Algorithms for Physical Design Automation PDF eBook |
Author | Charles J. Alpert |
Publisher | CRC Press |
Pages | 1044 |
Release | 2008-11-12 |
Genre | Computers |
ISBN | 1000654192 |
The physical design flow of any project depends upon the size of the design, the technology, the number of designers, the clock frequency, and the time to do the design. As technology advances and design-styles change, physical design flows are constantly reinvented as traditional phases are removed and new ones are added to accommodate changes in
VLSI Physical Design: From Graph Partitioning to Timing Closure
Title | VLSI Physical Design: From Graph Partitioning to Timing Closure PDF eBook |
Author | Andrew B. Kahng |
Publisher | Springer Science & Business Media |
Pages | 310 |
Release | 2011-01-27 |
Genre | Technology & Engineering |
ISBN | 9048195918 |
Design and optimization of integrated circuits are essential to the creation of new semiconductor chips, and physical optimizations are becoming more prominent as a result of semiconductor scaling. Modern chip design has become so complex that it is largely performed by specialized software, which is frequently updated to address advances in semiconductor technologies and increased problem complexities. A user of such software needs a high-level understanding of the underlying mathematical models and algorithms. On the other hand, a developer of such software must have a keen understanding of computer science aspects, including algorithmic performance bottlenecks and how various algorithms operate and interact. "VLSI Physical Design: From Graph Partitioning to Timing Closure" introduces and compares algorithms that are used during the physical design phase of integrated-circuit design, wherein a geometric chip layout is produced starting from an abstract circuit design. The emphasis is on essential and fundamental techniques, ranging from hypergraph partitioning and circuit placement to timing closure.
Process Variations and Probabilistic Integrated Circuit Design
Title | Process Variations and Probabilistic Integrated Circuit Design PDF eBook |
Author | Manfred Dietrich |
Publisher | Springer Science & Business Media |
Pages | 261 |
Release | 2011-11-20 |
Genre | Technology & Engineering |
ISBN | 1441966218 |
Uncertainty in key parameters within a chip and between different chips in the deep sub micron area plays a more and more important role. As a result, manufacturing process spreads need to be considered during the design process. Quantitative methodology is needed to ensure faultless functionality, despite existing process variations within given bounds, during product development. This book presents the technological, physical, and mathematical fundamentals for a design paradigm shift, from a deterministic process to a probability-orientated design process for microelectronic circuits. Readers will learn to evaluate the different sources of variations in the design flow in order to establish different design variants, while applying appropriate methods and tools to evaluate and optimize their design.
Static Timing Analysis for Nanometer Designs
Title | Static Timing Analysis for Nanometer Designs PDF eBook |
Author | J. Bhasker |
Publisher | Springer Science & Business Media |
Pages | 588 |
Release | 2009-04-03 |
Genre | Technology & Engineering |
ISBN | 0387938206 |
iming, timing, timing! That is the main concern of a digital designer charged with designing a semiconductor chip. What is it, how is it T described, and how does one verify it? The design team of a large digital design may spend months architecting and iterating the design to achieve the required timing target. Besides functional verification, the t- ing closure is the major milestone which dictates when a chip can be - leased to the semiconductor foundry for fabrication. This book addresses the timing verification using static timing analysis for nanometer designs. The book has originated from many years of our working in the area of timing verification for complex nanometer designs. We have come across many design engineers trying to learn the background and various aspects of static timing analysis. Unfortunately, there is no book currently ava- able that can be used by a working engineer to get acquainted with the - tails of static timing analysis. The chip designers lack a central reference for information on timing, that covers the basics to the advanced timing veri- cation procedures and techniques.
EDA for IC Implementation, Circuit Design, and Process Technology
Title | EDA for IC Implementation, Circuit Design, and Process Technology PDF eBook |
Author | Luciano Lavagno |
Publisher | CRC Press |
Pages | 704 |
Release | 2018-10-03 |
Genre | Technology & Engineering |
ISBN | 1351837583 |
Presenting a comprehensive overview of the design automation algorithms, tools, and methodologies used to design integrated circuits, the Electronic Design Automation for Integrated Circuits Handbook is available in two volumes. The second volume, EDA for IC Implementation, Circuit Design, and Process Technology, thoroughly examines real-time logic to GDSII (a file format used to transfer data of semiconductor physical layout), analog/mixed signal design, physical verification, and technology CAD (TCAD). Chapters contributed by leading experts authoritatively discuss design for manufacturability at the nanoscale, power supply network design and analysis, design modeling, and much more. Save on the complete set.