Time Series in High Dimension: the General Dynamic Factor Model
Title | Time Series in High Dimension: the General Dynamic Factor Model PDF eBook |
Author | Marc Hallin |
Publisher | World Scientific Publishing Company |
Pages | 764 |
Release | 2020-03-30 |
Genre | Business & Economics |
ISBN | 9789813278004 |
Factor models have become the most successful tool in the analysis and forecasting of high-dimensional time series. This monograph provides an extensive account of the so-called General Dynamic Factor Model methods. The topics covered include: asymptotic representation problems, estimation, forecasting, identification of the number of factors, identification of structural shocks, volatility analysis, and applications to macroeconomic and financial data.
Dynamic Factor Models
Title | Dynamic Factor Models PDF eBook |
Author | Jörg Breitung |
Publisher | |
Pages | 29 |
Release | 2005 |
Genre | |
ISBN | 9783865580979 |
The Oxford Handbook of Economic Forecasting
Title | The Oxford Handbook of Economic Forecasting PDF eBook |
Author | Michael P. Clements |
Publisher | OUP USA |
Pages | 732 |
Release | 2011-07-08 |
Genre | Business & Economics |
ISBN | 0195398645 |
Greater data availability has been coupled with developments in statistical theory and economic theory to allow more elaborate and complicated models to be entertained. These include factor models, DSGE models, restricted vector autoregressions, and non-linear models.
Time Series Models
Title | Time Series Models PDF eBook |
Author | Manfred Deistler |
Publisher | Springer Nature |
Pages | 213 |
Release | 2022-10-21 |
Genre | Mathematics |
ISBN | 3031132130 |
This textbook provides a self-contained presentation of the theory and models of time series analysis. Putting an emphasis on weakly stationary processes and linear dynamic models, it describes the basic concepts, ideas, methods and results in a mathematically well-founded form and includes numerous examples and exercises. The first part presents the theory of weakly stationary processes in time and frequency domain, including prediction and filtering. The second part deals with multivariate AR, ARMA and state space models, which are the most important model classes for stationary processes, and addresses the structure of AR, ARMA and state space systems, Yule-Walker equations, factorization of rational spectral densities and Kalman filtering. Finally, there is a discussion of Granger causality, linear dynamic factor models and (G)ARCH models. The book provides a solid basis for advanced mathematics students and researchers in fields such as data-driven modeling, forecasting and filtering, which are important in statistics, control engineering, financial mathematics, econometrics and signal processing, among other subjects.
Recent Advances in Econometrics and Statistics
Title | Recent Advances in Econometrics and Statistics PDF eBook |
Author | Matteo Barigozzi |
Publisher | Springer Nature |
Pages | 617 |
Release | |
Genre | |
ISBN | 303161853X |
Dynamic Linear Models with R
Title | Dynamic Linear Models with R PDF eBook |
Author | Giovanni Petris |
Publisher | Springer Science & Business Media |
Pages | 258 |
Release | 2009-06-12 |
Genre | Mathematics |
ISBN | 0387772383 |
State space models have gained tremendous popularity in recent years in as disparate fields as engineering, economics, genetics and ecology. After a detailed introduction to general state space models, this book focuses on dynamic linear models, emphasizing their Bayesian analysis. Whenever possible it is shown how to compute estimates and forecasts in closed form; for more complex models, simulation techniques are used. A final chapter covers modern sequential Monte Carlo algorithms. The book illustrates all the fundamental steps needed to use dynamic linear models in practice, using R. Many detailed examples based on real data sets are provided to show how to set up a specific model, estimate its parameters, and use it for forecasting. All the code used in the book is available online. No prior knowledge of Bayesian statistics or time series analysis is required, although familiarity with basic statistics and R is assumed.
Multidimensional Stationary Time Series
Title | Multidimensional Stationary Time Series PDF eBook |
Author | Marianna Bolla |
Publisher | CRC Press |
Pages | 318 |
Release | 2021-04-29 |
Genre | Mathematics |
ISBN | 1000392392 |
This book gives a brief survey of the theory of multidimensional (multivariate), weakly stationary time series, with emphasis on dimension reduction and prediction. Understanding the covered material requires a certain mathematical maturity, a degree of knowledge in probability theory, linear algebra, and also in real, complex and functional analysis. For this, the cited literature and the Appendix contain all necessary material. The main tools of the book include harmonic analysis, some abstract algebra, and state space methods: linear time-invariant filters, factorization of rational spectral densities, and methods that reduce the rank of the spectral density matrix. Serves to find analogies between classical results (Cramer, Wold, Kolmogorov, Wiener, Kálmán, Rozanov) and up-to-date methods for dimension reduction in multidimensional time series Provides a unified treatment for time and frequency domain inferences by using machinery of complex and harmonic analysis, spectral and Smith--McMillan decompositions. Establishes analogies between the time and frequency domain notions and calculations Discusses the Wold's decomposition and the Kolmogorov's classification together, by distinguishing between different types of singularities. Understanding the remote past helps us to characterize the ideal situation where there is a regular part at present. Examples and constructions are also given Establishes a common outline structure for the state space models, prediction, and innovation algorithms with unified notions and principles, which is applicable to real-life high frequency time series It is an ideal companion for graduate students studying the theory of multivariate time series and researchers working in this field.