Time Series Data Analysis in Oceanography
Title | Time Series Data Analysis in Oceanography PDF eBook |
Author | Chunyan Li |
Publisher | Cambridge University Press |
Pages | 483 |
Release | 2022-05-05 |
Genre | Computers |
ISBN | 1108474276 |
Textbook for students and researchers in oceanography and Earth science on theory and practice of time series analysis using MATLAB.
Data Analysis Methods in Physical Oceanography
Title | Data Analysis Methods in Physical Oceanography PDF eBook |
Author | Richard E. Thomson |
Publisher | Elsevier |
Pages | 654 |
Release | 2001-04-03 |
Genre | Science |
ISBN | 0080477003 |
Data Analysis Methods in Physical Oceanography is a practical referenceguide to established and modern data analysis techniques in earth and oceansciences. This second and revised edition is even more comprehensive with numerous updates, and an additional appendix on 'Convolution and Fourier transforms'. Intended for both students and established scientists, the fivemajor chapters of the book cover data acquisition and recording, dataprocessing and presentation, statistical methods and error handling,analysis of spatial data fields, and time series analysis methods. Chapter 5on time series analysis is a book in itself, spanning a wide diversity oftopics from stochastic processes and stationarity, coherence functions,Fourier analysis, tidal harmonic analysis, spectral and cross-spectralanalysis, wavelet and other related methods for processing nonstationarydata series, digital filters, and fractals. The seven appendices includeunit conversions, approximation methods and nondimensional numbers used ingeophysical fluid dynamics, presentations on convolution, statisticalterminology, and distribution functions, and a number of importantstatistical tables. Twenty pages are devoted to references. Featuring:• An in-depth presentation of modern techniques for the analysis of temporal and spatial data sets collected in oceanography, geophysics, and other disciplines in earth and ocean sciences.• A detailed overview of oceanographic instrumentation and sensors - old and new - used to collect oceanographic data.• 7 appendices especially applicable to earth and ocean sciences ranging from conversion of units, through statistical tables, to terminology and non-dimensional parameters. In praise of the first edition: "(...)This is a very practical guide to the various statistical analysis methods used for obtaining information from geophysical data, with particular reference to oceanography(...)The book provides both a text for advanced students of the geophysical sciences and a useful reference volume for researchers." Aslib Book Guide Vol 63, No. 9, 1998 "(...)This is an excellent book that I recommend highly and will definitely use for my own research and teaching." EOS Transactions, D.A. Jay, 1999 "(...)In summary, this book is the most comprehensive and practical source of information on data analysis methods available to the physical oceanographer. The reader gets the benefit of extremely broad coverage and an excellent set of examples drawn from geographical observations." Oceanography, Vol. 12, No. 3, A. Plueddemann, 1999 "(...)Data Analysis Methods in Physical Oceanography is highly recommended for a wide range of readers, from the relative novice to the experienced researcher. It would be appropriate for academic and special libraries." E-Streams, Vol. 2, No. 8, P. Mofjelf, August 1999
Ocean Wave Data Analysis
Title | Ocean Wave Data Analysis PDF eBook |
Author | Arash Karimpour |
Publisher | |
Pages | |
Release | 2018-05-02 |
Genre | |
ISBN | 9780692109977 |
Oceanographic Analysis with R
Title | Oceanographic Analysis with R PDF eBook |
Author | Dan E. Kelley |
Publisher | Springer |
Pages | 303 |
Release | 2018-10-17 |
Genre | Medical |
ISBN | 1493988441 |
This book presents the R software environment as a key tool for oceanographic computations and provides a rationale for using R over the more widely-used tools of the field such as MATLAB. Kelley provides a general introduction to R before introducing the ‘oce’ package. This package greatly simplifies oceanographic analysis by handling the details of discipline-specific file formats, calculations, and plots. Designed for real-world application and developed with open-source protocols, oce supports a broad range of practical work. Generic functions take care of general operations such as subsetting and plotting data, while specialized functions address more specific tasks such as tidal decomposition, hydrographic analysis, and ADCP coordinate transformation. In addition, the package makes it easy to document work, because its functions automatically update processing logs stored within its data objects. Kelley teaches key R functions using classic examples from the history of oceanography, specifically the work of Alfred Redfield, Gordon Riley, J. Tuzo Wilson, and Walter Munk. Acknowledging the pervasive popularity of MATLAB, the book provides advice to users who would like to switch to R. Including a suite of real-life applications and over 100 exercises and solutions, the treatment is ideal for oceanographers, technicians, and students who want to add R to their list of tools for oceanographic analysis.
Multivariate Time Series Analysis in Climate and Environmental Research
Title | Multivariate Time Series Analysis in Climate and Environmental Research PDF eBook |
Author | Zhihua Zhang |
Publisher | Springer |
Pages | 293 |
Release | 2017-11-09 |
Genre | Science |
ISBN | 3319673408 |
This book offers comprehensive information on the theory, models and algorithms involved in state-of-the-art multivariate time series analysis and highlights several of the latest research advances in climate and environmental science. The main topics addressed include Multivariate Time-Frequency Analysis, Artificial Neural Networks, Stochastic Modeling and Optimization, Spectral Analysis, Global Climate Change, Regional Climate Change, Ecosystem and Carbon Cycle, Paleoclimate, and Strategies for Climate Change Mitigation. The self-contained guide will be of great value to researchers and advanced students from a wide range of disciplines: those from Meteorology, Climatology, Oceanography, the Earth Sciences and Environmental Science will be introduced to various advanced tools for analyzing multivariate data, greatly facilitating their research, while those from Applied Mathematics, Statistics, Physics, and the Computer Sciences will learn how to use these multivariate time series analysis tools to approach climate and environmental topics.
Data Analysis Methods in Physical Oceanography
Title | Data Analysis Methods in Physical Oceanography PDF eBook |
Author | William J. Emery |
Publisher | Elsevier |
Pages | 654 |
Release | 2001-04-03 |
Genre | Science |
ISBN | 0444507566 |
Data Analysis Methods in Physical Oceanography is a practical referenceguide to established and modern data analysis techniques in earth and oceansciences. This second and revised edition is even more comprehensive with numerous updates, and an additional appendix on 'Convolution and Fourier transforms'. Intended for both students and established scientists, the fivemajor chapters of the book cover data acquisition and recording, dataprocessing and presentation, statistical methods and error handling,analysis of spatial data fields, and time series analysis methods. Chapter 5on time series analysis is a book in itself, spanning a wide diversity oftopics from stochastic processes and stationarity, coherence functions,Fourier analysis, tidal harmonic analysis, spectral and cross-spectralanalysis, wavelet and other related methods for processing nonstationarydata series, digital filters, and fractals. The seven appendices includeunit conversions, approximation methods and nondimensional numbers used ingeophysical fluid dynamics, presentations on convolution, statisticalterminology, and distribution functions, and a number of importantstatistical tables. Twenty pages are devoted to references. Featuring:. An in-depth presentation of modern techniques for the analysis of temporal and spatial data sets collected in oceanography, geophysics, and other disciplines in earth and ocean sciences.. A detailed overview of oceanographic instrumentation and sensors - old and new - used to collect oceanographic data.. 7 appendices especially applicable to earth and ocean sciences ranging from conversion of units, through statistical tables, to terminology and non-dimensional parameters. In praise of the first edition: "(...)This is a very practical guide to the various statistical analysis methods used for obtaining information from geophysical data, with particular reference to oceanography(...)The book provides both a text for advanced students of the geophysical sciences and a useful reference volume for researchers." Aslib Book Guide Vol 63, No. 9, 1998 "(...)This is an excellent book that I recommend highly and will definitely use for my own research and teaching." EOS Transactions, D.A. Jay, 1999 "(...)In summary, this book is the most comprehensive and practical source of information on data analysis methods available to the physical oceanographer. The reader gets the benefit of extremely broad coverage and an excellent set of examples drawn from geographical observations." Oceanography, Vol. 12, No. 3, A. Plueddemann, 1999 "(...)Data Analysis Methods in Physical Oceanography is highly recommended for a wide range of readers, from the relative novice to the experienced researcher. It would be appropriate for academic and special libraries." E-Streams, Vol. 2, No. 8, P. Mofjelf, August 1999
Modeling Methods for Marine Science
Title | Modeling Methods for Marine Science PDF eBook |
Author | David M. Glover |
Publisher | Cambridge University Press |
Pages | 589 |
Release | 2011-06-02 |
Genre | Science |
ISBN | 1139500716 |
This advanced textbook on modeling, data analysis and numerical techniques for marine science has been developed from a course taught by the authors for many years at the Woods Hole Oceanographic Institute. The first part covers statistics: singular value decomposition, error propagation, least squares regression, principal component analysis, time series analysis and objective interpolation. The second part deals with modeling techniques: finite differences, stability analysis and optimization. The third part describes case studies of actual ocean models of ever increasing dimensionality and complexity, starting with zero-dimensional models and finishing with three-dimensional general circulation models. Throughout the book hands-on computational examples are introduced using the MATLAB programming language and the principles of scientific visualization are emphasised. Ideal as a textbook for advanced students of oceanography on courses in data analysis and numerical modeling, the book is also an invaluable resource for a broad range of scientists undertaking modeling in chemical, biological, geological and physical oceanography.