Time Series Analysis for the State-Space Model with R/Stan
Title | Time Series Analysis for the State-Space Model with R/Stan PDF eBook |
Author | Junichiro Hagiwara |
Publisher | Springer Nature |
Pages | 350 |
Release | 2021-08-30 |
Genre | Mathematics |
ISBN | 9811607117 |
This book provides a comprehensive and concrete illustration of time series analysis focusing on the state-space model, which has recently attracted increasing attention in a broad range of fields. The major feature of the book lies in its consistent Bayesian treatment regarding whole combinations of batch and sequential solutions for linear Gaussian and general state-space models: MCMC and Kalman/particle filter. The reader is given insight on flexible modeling in modern time series analysis. The main topics of the book deal with the state-space model, covering extensively, from introductory and exploratory methods to the latest advanced topics such as real-time structural change detection. Additionally, a practical exercise using R/Stan based on real data promotes understanding and enhances the reader’s analytical capability.
Bayesian Statistical Modeling with Stan, R, and Python
Title | Bayesian Statistical Modeling with Stan, R, and Python PDF eBook |
Author | Kentaro Matsuura |
Publisher | Springer Nature |
Pages | 395 |
Release | 2023-01-24 |
Genre | Computers |
ISBN | 9811947554 |
This book provides a highly practical introduction to Bayesian statistical modeling with Stan, which has become the most popular probabilistic programming language. The book is divided into four parts. The first part reviews the theoretical background of modeling and Bayesian inference and presents a modeling workflow that makes modeling more engineering than art. The second part discusses the use of Stan, CmdStanR, and CmdStanPy from the very beginning to basic regression analyses. The third part then introduces a number of probability distributions, nonlinear models, and hierarchical (multilevel) models, which are essential to mastering statistical modeling. It also describes a wide range of frequently used modeling techniques, such as censoring, outliers, missing data, speed-up, and parameter constraints, and discusses how to lead convergence of MCMC. Lastly, the fourth part examines advanced topics for real-world data: longitudinal data analysis, state space models, spatial data analysis, Gaussian processes, Bayesian optimization, dimensionality reduction, model selection, and information criteria, demonstrating that Stan can solve any one of these problems in as little as 30 lines. Using numerous easy-to-understand examples, the book explains key concepts, which continue to be useful when using future versions of Stan and when using other statistical modeling tools. The examples do not require domain knowledge and can be generalized to many fields. The book presents full explanations of code and math formulas, enabling readers to extend models for their own problems. All the code and data are on GitHub.
Natural Geo-Disasters and Resiliency
Title | Natural Geo-Disasters and Resiliency PDF eBook |
Author | Hemanta Hazarika |
Publisher | Springer Nature |
Pages | 516 |
Release | |
Genre | |
ISBN | 9819992230 |
Time Series Analysis for the State-Space Model with R/Stan
Title | Time Series Analysis for the State-Space Model with R/Stan PDF eBook |
Author | Junichiro Hagiwara |
Publisher | |
Pages | 0 |
Release | 2021 |
Genre | |
ISBN | 9789811607127 |
This book provides a comprehensive and concrete illustration of time series analysis focusing on the state-space model, which has recently attracted increasing attention in a broad range of fields. The major feature of the book lies in its consistent Bayesian treatment regarding whole combinations of batch and sequential solutions for linear Gaussian and general state-space models: MCMC and Kalman/particle filter. The reader is given insight on flexible modeling in modern time series analysis. The main topics of the book deal with the state-space model, covering extensively, from introductory and exploratory methods to the latest advanced topics such as real-time structural change detection. Additionally, a practical exercise using R/Stan based on real data promotes understanding and enhances the reader's analytical capability. .
Ethics in Statistics
Title | Ethics in Statistics PDF eBook |
Author | Hassan Doosti |
Publisher | Ethics International Press |
Pages | 598 |
Release | 2024-03-29 |
Genre | Reference |
ISBN | 1871891663 |
Data plays a vital role in different parts of our lives. In the world of big data, and policy determined by a variety of statistical artifacts, discussions around the ethics of data gathering, manipulation and presentation are increasingly important. Ethics in Statistics aims to make a significant contribution to that debate. The processes of gathering data through sampling, summarising of the findings, and extending results to a population, need to be checked via an ethical prospective, as well as a statistical one. Statistical learning without ethics can be harmful for mankind. This edited collection brings together contributors in the field of data science, data analytics and statistics, to share their thoughts about the role of ethics in different aspects of statistical learning.
Time Series Analysis by State Space Methods
Title | Time Series Analysis by State Space Methods PDF eBook |
Author | James Durbin |
Publisher | OUP Oxford |
Pages | 369 |
Release | 2012-05-03 |
Genre | Business & Economics |
ISBN | 0191627194 |
This new edition updates Durbin & Koopman's important text on the state space approach to time series analysis. The distinguishing feature of state space time series models is that observations are regarded as made up of distinct components such as trend, seasonal, regression elements and disturbance terms, each of which is modelled separately. The techniques that emerge from this approach are very flexible and are capable of handling a much wider range of problems than the main analytical system currently in use for time series analysis, the Box-Jenkins ARIMA system. Additions to this second edition include the filtering of nonlinear and non-Gaussian series. Part I of the book obtains the mean and variance of the state, of a variable intended to measure the effect of an interaction and of regression coefficients, in terms of the observations. Part II extends the treatment to nonlinear and non-normal models. For these, analytical solutions are not available so methods are based on simulation.
The Handbook of Personality Dynamics and Processes
Title | The Handbook of Personality Dynamics and Processes PDF eBook |
Author | John F. Rauthmann |
Publisher | Academic Press |
Pages | 1406 |
Release | 2021-01-20 |
Genre | Psychology |
ISBN | 012813996X |
The Handbook of Personality Dynamics and Processes is a primer to the basic and most important concepts, theories, methods, empirical findings, and applications of personality dynamics and processes. This book details how personality psychology has evolved from descriptive research to a more explanatory and dynamic science of personality, thus bridging structure- and process-based approaches, and it also reflects personality psychology's interest in the dynamic organization and interplay of thoughts, feelings, desires, and actions within persons who are always embedded into social, cultural and historic contexts. The Handbook of Personality Dynamics and Processes tackles each topic with a range of methods geared towards assessing and analyzing their dynamic nature, such as ecological momentary sampling of personality manifestations in real-life; dynamic modeling of time-series or longitudinal personality data; network modeling and simulation; and systems-theoretical models of dynamic processes. - Ties topics and methods together for a more dynamic understanding of personality - Summarizes existing knowledge and insights of personality dynamics and processes - Covers a broad compilation of cutting-edge insights - Addresses the biophysiological and social mechanisms underlying the expression and effects of personality - Examines within-person consistency and variability