Time Series Analysis and Macroeconometric Modelling
Title | Time Series Analysis and Macroeconometric Modelling PDF eBook |
Author | Kenneth Frank Wallis |
Publisher | Edward Elgar Publishing |
Pages | 462 |
Release | 1995-01-01 |
Genre | Business & Economics |
ISBN | 9781782541622 |
'An excellent reference volume of this author's work, bringing together articles published over a 25 year span on the statistical analysis of economic time series, large scale macroeconomic modelling and the interface between them.' - Aslib Book Guide This major volume of essays by Kenneth F. Wallis features 28 articles published over a quarter of a century on the statistical analysis of economic time series, large-scale macroeconometric modelling, and the interface between them. The first part deals with time-series econometrics and includes significant early contributions to the development of the LSE tradition in time-series econometrics, which is the dominant British tradition and has considerable influence worldwide. Later sections discuss theoretical and practical issues in modelling seasonality and forecasting with applications in both large-scale and small-scale models. The final section summarizes the research programme of the ESRC Macroeconomic Modelling Bureau, a unique comparison project among economy-wide macroeconometric models.
Introduction to Modern Time Series Analysis
Title | Introduction to Modern Time Series Analysis PDF eBook |
Author | Gebhard Kirchgässner |
Publisher | Springer Science & Business Media |
Pages | 288 |
Release | 2008-08-27 |
Genre | Business & Economics |
ISBN | 9783540687351 |
This book presents modern developments in time series econometrics that are applied to macroeconomic and financial time series. It contains the most important approaches to analyze time series which may be stationary or nonstationary.
Macroeconomic Forecasting in the Era of Big Data
Title | Macroeconomic Forecasting in the Era of Big Data PDF eBook |
Author | Peter Fuleky |
Publisher | Springer Nature |
Pages | 716 |
Release | 2019-11-28 |
Genre | Business & Economics |
ISBN | 3030311503 |
This book surveys big data tools used in macroeconomic forecasting and addresses related econometric issues, including how to capture dynamic relationships among variables; how to select parsimonious models; how to deal with model uncertainty, instability, non-stationarity, and mixed frequency data; and how to evaluate forecasts, among others. Each chapter is self-contained with references, and provides solid background information, while also reviewing the latest advances in the field. Accordingly, the book offers a valuable resource for researchers, professional forecasters, and students of quantitative economics.
The Econometric Analysis of Time Series
Title | The Econometric Analysis of Time Series PDF eBook |
Author | Andrew C. Harvey |
Publisher | |
Pages | 387 |
Release | 1990 |
Genre | Econometrics |
ISBN | 9780860031925 |
Coverage has been extended to include recent topics. The book again presents a unified treatment of economic theory, with the method of maximum likelihood playing a key role in both estimation and testing. Exercises are included and the book is suitable as a general text for final-year undergraduate and postgraduate students.
Forecasting Economic Time Series
Title | Forecasting Economic Time Series PDF eBook |
Author | Michael Clements |
Publisher | Cambridge University Press |
Pages | 402 |
Release | 1998-10-08 |
Genre | Business & Economics |
ISBN | 9780521634809 |
This book provides a formal analysis of the models, procedures, and measures of economic forecasting with a view to improving forecasting practice. David Hendry and Michael Clements base the analyses on assumptions pertinent to the economies to be forecast, viz. a non-constant, evolving economic system, and econometric models whose form and structure are unknown a priori. The authors find that conclusions which can be established formally for constant-parameter stationary processes and correctly-specified models often do not hold when unrealistic assumptions are relaxed. Despite the difficulty of proceeding formally when models are mis-specified in unknown ways for non-stationary processes that are subject to structural breaks, Hendry and Clements show that significant insights can be gleaned. For example, a formal taxonomy of forecasting errors can be developed, the role of causal information clarified, intercept corrections re-established as a method for achieving robustness against forms of structural change, and measures of forecast accuracy re-interpreted.
Forecasting Non-stationary Economic Time Series
Title | Forecasting Non-stationary Economic Time Series PDF eBook |
Author | Michael P. Clements |
Publisher | MIT Press |
Pages | 398 |
Release | 1999 |
Genre | Business & Economics |
ISBN | 9780262531894 |
This text on economic forecasting asks why some practices seem to work empirically despite a lack of formal support from theory. After reviewing the conventional approach to forecasting, it looks at the implications for causal modelling, presents forecast errors and delineates sources of failure.
Modelling Financial Time Series
Title | Modelling Financial Time Series PDF eBook |
Author | Stephen J. Taylor |
Publisher | World Scientific |
Pages | 297 |
Release | 2008 |
Genre | Business & Economics |
ISBN | 9812770852 |
This book contains several innovative models for the prices of financial assets. First published in 1986, it is a classic text in the area of financial econometrics. It presents ARCH and stochastic volatility models that are often used and cited in academic research and are applied by quantitative analysts in many banks. Another often-cited contribution of the first edition is the documentation of statistical characteristics of financial returns, which are referred to as stylized facts. This second edition takes into account the remarkable progress made by empirical researchers during the past two decades from 1986 to 2006. In the new Preface, the author summarizes this progress in two key areas: firstly, measuring, modelling and forecasting volatility; and secondly, detecting and exploiting price trends. Sample Chapter(s). Chapter 1: Introduction (1,134 KB). Contents: Features of Financial Returns; Modelling Price Volatility; Forecasting Standard Deviations; The Accuracy of Autocorrelation Estimates; Testing the Random Walk Hypothesis; Forecasting Trends in Prices; Evidence Against the Efficiency of Futures Markets; Valuing Options; Appendix: A Computer Program for Modelling Financial Time Series. Readership: Academic researchers in finance & economics; quantitative analysts.