Three-Dimensional Integrated Circuit Design
Title | Three-Dimensional Integrated Circuit Design PDF eBook |
Author | Vasilis F. Pavlidis |
Publisher | Newnes |
Pages | 770 |
Release | 2017-07-04 |
Genre | Technology & Engineering |
ISBN | 0124104843 |
Three-Dimensional Integrated Circuit Design, Second Eition, expands the original with more than twice as much new content, adding the latest developments in circuit models, temperature considerations, power management, memory issues, and heterogeneous integration. 3-D IC experts Pavlidis, Savidis, and Friedman cover the full product development cycle throughout the book, emphasizing not only physical design, but also algorithms and system-level considerations to increase speed while conserving energy. A handy, comprehensive reference or a practical design guide, this book provides effective solutions to specific challenging problems concerning the design of three-dimensional integrated circuits. Expanded with new chapters and updates throughout based on the latest research in 3-D integration: - Manufacturing techniques for 3-D ICs with TSVs - Electrical modeling and closed-form expressions of through silicon vias - Substrate noise coupling in heterogeneous 3-D ICs - Design of 3-D ICs with inductive links - Synchronization in 3-D ICs - Variation effects on 3-D ICs - Correlation of WID variations for intra-tier buffers and wires - Offers practical guidance on designing 3-D heterogeneous systems - Provides power delivery of 3-D ICs - Demonstrates the use of 3-D ICs within heterogeneous systems that include a variety of materials, devices, processors, GPU-CPU integration, and more - Provides experimental case studies in power delivery, synchronization, and thermal characterization
Three-Dimensional Integrated Circuit Design
Title | Three-Dimensional Integrated Circuit Design PDF eBook |
Author | Yuan Xie |
Publisher | Springer Science & Business Media |
Pages | 292 |
Release | 2009-12-02 |
Genre | Technology & Engineering |
ISBN | 144190784X |
We live in a time of great change. In the electronics world, the last several decades have seen unprecedented growth and advancement, described by Moore’s law. This observation stated that transistor density in integrated circuits doubles every 1. 5–2 years. This came with the simultaneous improvement of individual device perf- mance as well as the reduction of device power such that the total power of the resulting ICs remained under control. No trend remains constant forever, and this is unfortunately the case with Moore’s law. The trouble began a number of years ago when CMOS devices were no longer able to proceed along the classical scaling trends. Key device parameters such as gate oxide thickness were simply no longer able to scale. As a result, device o- state currents began to creep up at an alarming rate. These continuing problems with classical scaling have led to a leveling off of IC clock speeds to the range of several GHz. Of course, chips can be clocked higher but the thermal issues become unmanageable. This has led to the recent trend toward microprocessors with mul- ple cores, each running at a few GHz at the most. The goal is to continue improving performance via parallelism by adding more and more cores instead of increasing speed. The challenge here is to ensure that general purpose codes can be ef?ciently parallelized. There is another potential solution to the problem of how to improve CMOS technology performance: three-dimensional integrated circuits (3D ICs).
Design-for-Test and Test Optimization Techniques for TSV-based 3D Stacked ICs
Title | Design-for-Test and Test Optimization Techniques for TSV-based 3D Stacked ICs PDF eBook |
Author | Brandon Noia |
Publisher | Springer Science & Business Media |
Pages | 260 |
Release | 2013-11-19 |
Genre | Technology & Engineering |
ISBN | 3319023780 |
This book describes innovative techniques to address the testing needs of 3D stacked integrated circuits (ICs) that utilize through-silicon-vias (TSVs) as vertical interconnects. The authors identify the key challenges facing 3D IC testing and present results that have emerged from cutting-edge research in this domain. Coverage includes topics ranging from die-level wrappers, self-test circuits, and TSV probing to test-architecture design, test scheduling, and optimization. Readers will benefit from an in-depth look at test-technology solutions that are needed to make 3D ICs a reality and commercially viable.
3D IC Stacking Technology
Title | 3D IC Stacking Technology PDF eBook |
Author | Banqiu Wu |
Publisher | McGraw Hill Professional |
Pages | 543 |
Release | 2011-10-14 |
Genre | Technology & Engineering |
ISBN | 0071741968 |
The latest advances in three-dimensional integrated circuit stacking technology With a focus on industrial applications, 3D IC Stacking Technology offers comprehensive coverage of design, test, and fabrication processing methods for three-dimensional device integration. Each chapter in this authoritative guide is written by industry experts and details a separate fabrication step. Future industry applications and cutting-edge design potential are also discussed. This is an essential resource for semiconductor engineers and portable device designers. 3D IC Stacking Technology covers: High density through silicon stacking (TSS) technology Practical design ecosystem for heterogeneous 3D IC products Design automation and TCAD tool solutions for through silicon via (TSV)-based 3D IC stack Process integration for TSV manufacturing High-aspect-ratio silicon etch for TSV Dielectric deposition for TSV Barrier and seed deposition Copper electrodeposition for TSV Chemical mechanical polishing for TSV applications Temporary and permanent bonding Assembly and test aspects of TSV technology
Three-Dimensional Integration of Semiconductors
Title | Three-Dimensional Integration of Semiconductors PDF eBook |
Author | Kazuo Kondo |
Publisher | Springer |
Pages | 423 |
Release | 2015-12-09 |
Genre | Science |
ISBN | 3319186752 |
This book starts with background concerning three-dimensional integration - including their low energy consumption and high speed image processing - and then proceeds to how to construct them and which materials to use in particular situations. The book covers numerous applications, including next generation smart phones, driving assistance systems, capsule endoscopes, homing missiles, and many others. The book concludes with recent progress and developments in three dimensional packaging, as well as future prospects.
Handbook of 3D Integration, Volume 4
Title | Handbook of 3D Integration, Volume 4 PDF eBook |
Author | Paul D. Franzon |
Publisher | John Wiley & Sons |
Pages | 655 |
Release | 2019-01-25 |
Genre | Technology & Engineering |
ISBN | 3527697063 |
This fourth volume of the landmark handbook focuses on the design, testing, and thermal management of 3D-integrated circuits, both from a technological and materials science perspective. Edited and authored by key contributors from top research institutions and high-tech companies, the first part of the book provides an overview of the latest developments in 3D chip design, including challenges and opportunities. The second part focuses on the test methods used to assess the quality and reliability of the 3D-integrated circuits, while the third and final part deals with thermal management and advanced cooling technologies and their integration.
Design of 3D Integrated Circuits and Systems
Title | Design of 3D Integrated Circuits and Systems PDF eBook |
Author | Rohit Sharma |
Publisher | CRC Press |
Pages | 302 |
Release | 2018-09-03 |
Genre | Technology & Engineering |
ISBN | 1466589426 |
Three-dimensional (3D) integration of microsystems and subsystems has become essential to the future of semiconductor technology development. 3D integration requires a greater understanding of several interconnected systems stacked over each other. While this vertical growth profoundly increases the system functionality, it also exponentially increases the design complexity. Design of 3D Integrated Circuits and Systems tackles all aspects of 3D integration, including 3D circuit and system design, new processes and simulation techniques, alternative communication schemes for 3D circuits and systems, application of novel materials for 3D systems, and the thermal challenges to restrict power dissipation and improve performance of 3D systems. Containing contributions from experts in industry as well as academia, this authoritative text: Illustrates different 3D integration approaches, such as die-to-die, die-to-wafer, and wafer-to-wafer Discusses the use of interposer technology and the role of Through-Silicon Vias (TSVs) Presents the latest improvements in three major fields of thermal management for multiprocessor systems-on-chip (MPSoCs) Explores ThruChip Interface (TCI), NAND flash memory stacking, and emerging applications Describes large-scale integration testing and state-of-the-art low-power testing solutions Complete with experimental results of chip-level 3D integration schemes tested at IBM and case studies on advanced complementary metal–oxide–semiconductor (CMOS) integration for 3D integrated circuits (ICs), Design of 3D Integrated Circuits and Systems is a practical reference that not only covers a wealth of design issues encountered in 3D integration but also demonstrates their impact on the efficiency of 3D systems.