Thermoelectric Power in Nanostructured Materials

Thermoelectric Power in Nanostructured Materials
Title Thermoelectric Power in Nanostructured Materials PDF eBook
Author Kamakhya Prasad Ghatak
Publisher Springer Science & Business Media
Pages 411
Release 2010-07-20
Genre Technology & Engineering
ISBN 3642105718

Download Thermoelectric Power in Nanostructured Materials Book in PDF, Epub and Kindle

This is the first monograph which solely investigates the thermoelectric power in nanostrcutured materials under strong magnetic field (TPSM) in quantum confined nonlinear optical, III-V, II-VI, n-GaP, n-Ge, Te, Graphite, PtSb2, zerogap, II-V, Gallium Antimonide, stressed materials, Bismuth, IV-VI, lead germanium telluride, Zinc and Cadmium diphosphides, Bi2Te3, Antimony and carbon nanotubes, III-V, II-VI, IV-VI and HgTe/CdTe superlattices with graded interfaces and effective mass superlattices under magnetic quantization, the quantum wires and dots of the aforementiond superlattices by formulating the approprate respective carrier energy spectra which in turn control the quantum processes in quantum effect devices. The TPSM in macro, quantum wire and quantum dot superlattices of optoelectronic materials in the presence of external photo-excitation have also been studied on the basis of newly formulated electron dispersion laws. This monograph contains 150 open research problems which form the very core and are useful for PhD students and researchers in the fields of materials science, solid-state sciences, computational and theoretical nanoscience and technology, nanostructured thermodynamics and condensed matter physics in general in addition to the graduate courses on modern thermoelectric materials in various academic departments of many institutes and universities.

Nanotechnology for Energy Sustainability

Nanotechnology for Energy Sustainability
Title Nanotechnology for Energy Sustainability PDF eBook
Author Baldev Raj
Publisher John Wiley & Sons
Pages 1487
Release 2017-01-27
Genre Technology & Engineering
ISBN 3527696113

Download Nanotechnology for Energy Sustainability Book in PDF, Epub and Kindle

Dieses Referenzwerk in drei handlichen Bänden bietet einen detaillierten Überblick über Anwendungen der Nanotechnologie im Bereich Nachhaltigkeit in der Energieversorgung. Der erste Band dieses klar strukturierten Nachschlagewerks behandelt nach der Einleitung die Themen Energieerzeugung, erneuerbare Energien, Energiespeicherung, Energieverteilung sowie Energieumwandlung und Energy-Harvesting. Im zweiten Band werden auf Nanotechnologie basierte Materialen, Energieeinsparung und -management, technologische und urheberrechtlich relevante Fragen, Märkte und Umweltsanierung erörtert. Der dritte Band wirft einen Blick in die Zukunft, auf technologische Fortschritte und gibt Empfehlungen. Ein wichtiges Handbuch für alle Experten auf diesem Gebiet, von Forschern und Ingenieuren im wissenschaftlichen Bereich bis hin zu Entwicklern in der Industrie.

Innovative Thermoelectric Materials

Innovative Thermoelectric Materials
Title Innovative Thermoelectric Materials PDF eBook
Author Howard E. Katz
Publisher World Scientific
Pages 293
Release 2016
Genre Technology & Engineering
ISBN 1783266066

Download Innovative Thermoelectric Materials Book in PDF, Epub and Kindle

"Power generation from environmentally friendly sources has led to surging interest in thermoelectrics. There has been a move toward alternative thermoelectric materials with enhanced performance through materials and structures that utilize common and safer elements and alternative mechanistic approaches while increasing processing latitude and decreasing cost. This wide-ranging volume examines this progress and future prospects with the new technologies, ease of processing and cost as major considerations, and will benefit active researchers, students and others interested in cutting-edge work in thermoelectric materials. Innovative Thermoelectric Materials incorporates the contributions of a group of recognized experts in thermoelectric materials, many of whom were the first to introduce various materials systems into thermoelectric systems. The perspectives brought to this evolving subject will provide important insights on which those developing the field can build, and will inspire new research directions for the future."--Provided by publisher.

Thermoelectrics Handbook

Thermoelectrics Handbook
Title Thermoelectrics Handbook PDF eBook
Author D.M. Rowe
Publisher CRC Press
Pages 1008
Release 2018-10-03
Genre Technology & Engineering
ISBN 1420038907

Download Thermoelectrics Handbook Book in PDF, Epub and Kindle

Ten years ago, D.M. Rowe introduced the bestselling CRC Handbook of Thermoelectrics to wide acclaim. Since then, increasing environmental concerns, desire for long-life electrical power sources, and continued progress in miniaturization of electronics has led to a substantial increase in research activity involving thermoelectrics. Reflecting the latest trends and developments, the Thermoelectrics Handbook: Macro to Nano is an extension of the earlier work and covers the entire range of thermoelectrics disciplines. Serving as a convenient reference as well as a thorough introduction to thermoelectrics, this book includes contributions from 99 leading authorities from around the world. Its coverage spans from general principles and theoretical concepts to material preparation and measurements; thermoelectric materials; thermoelements, modules, and devices; and thermoelectric systems and applications. Reflecting the enormous impact of nanotechnology on the field-as the thermoelectric properties of nanostructured materials far surpass the performance of conventional materials-each section progresses systematically from macro-scale to micro/nano-scale topics. In addition, the book contains an appendix listing major manufacturers and suppliers of thermoelectric modules. There is no longer any need to spend hours plodding through the journal literature for information. The Thermoelectrics Handbook: Macro to Nano offers a timely, comprehensive treatment of all areas of thermoelectrics in a single, unified reference.

Nanoscale Thermoelectrics

Nanoscale Thermoelectrics
Title Nanoscale Thermoelectrics PDF eBook
Author Xiaodong Wang
Publisher Springer Science & Business Media
Pages 520
Release 2013-11-18
Genre Technology & Engineering
ISBN 3319020129

Download Nanoscale Thermoelectrics Book in PDF, Epub and Kindle

For the efficient utilization of energy resources and the minimization of environmental damage, thermoelectric materials can play an important role by converting waste heat into electricity directly. Nanostructured thermoelectric materials have received much attention recently due to the potential for enhanced properties associated with size effects and quantum confinement. Nanoscale Thermoelectrics describes the theory underlying these phenomena, as well as various thermoelectric materials and nanostructures such as carbon nanotubes, SiGe nanowires, and graphene nanoribbons. Chapters written by leading scientists throughout the world are intended to create a fundamental bridge between thermoelectrics and nanotechnology, and to stimulate readers' interest in developing new types of thermoelectric materials and devices for power generation and other applications. Nanoscale Thermoelectrics is both a comprehensive introduction to the field and a guide to further research, and can be recommended for Physics, Electrical Engineering, and Materials Science departments.

Thermoelectric Properties of Some Nanostructured Materials

Thermoelectric Properties of Some Nanostructured Materials
Title Thermoelectric Properties of Some Nanostructured Materials PDF eBook
Author Chanderbhan Chotia
Publisher Mohammed Abdul Sattar
Pages 0
Release 2023-03-05
Genre Technology & Engineering
ISBN

Download Thermoelectric Properties of Some Nanostructured Materials Book in PDF, Epub and Kindle

Fossil fuels such as coal, oil or natural gas are consumed as a large part of the world's total energy consumption . Fossil-fuel-powered generators however produce the greenhouse gases such as CO2 or SO2 that cause environmental pollution and contribute to global warming. These problems challenge researchers to look for alternatives and sustainable energies. Thermoelectric (TE) materials are promising alternatives in this direction because they work without emissions of harmful gases or heat and without chemical waste. TE materials work noiselessly because they do not consist of any mechanical parts and convert thermal energy directly into electricity and vice versa. The conversion of thermal energy into electricity is based on the Seebeck effect and this phenomenon is also known as the thermoelectric effect or thermoelectric power, which is why the TE devices are more often referred to as thermoelectric generators (TEGs). Thermoelectric properties of some nanostructured materials refer to the study of the ability of materials at the nanoscale to convert temperature differences into electrical energy and vice versa. This phenomenon is known as the Seebeck effect, which is based on the generation of a potential difference when a temperature gradient is applied across a material. Nanostructured materials such as nanoparticles, thin films, superlattices, quantum dots, nanowires, and carbon nanotubes have unique properties that make them attractive for thermoelectric applications. These materials exhibit quantum confinement effects, which can enhance the thermoelectric performance by modifying the electronic and phononic properties of the material. The thermoelectric properties of nanostructured materials are characterized by the Seebeck coefficient, electrical conductivity, and thermal conductivity. The figure of merit (ZT) is a measure of the efficiency of thermoelectric materials, and it is determined by the ratio of the Seebeck coefficient, electrical conductivity, and thermal conductivity. Researchers use various techniques such as thermal annealing, band structure engineering, density functional theory, high-throughput screening, molecular dynamics simulations, electron microscopy, and X-ray diffraction to study the thermoelectric properties of nanostructured materials. Thermoelectric generators based on nanostructured materials have potential applications in energy harvesting from waste heat, solar thermoelectric power generation, and cooling devices. Hence, the study of thermoelectric properties of some nanostructured materials has significant implications for the development of sustainable energy technologies.

Advances in Thermoelectricity: Foundational Issues, Materials and Nanotechnology

Advances in Thermoelectricity: Foundational Issues, Materials and Nanotechnology
Title Advances in Thermoelectricity: Foundational Issues, Materials and Nanotechnology PDF eBook
Author D. Narducci
Publisher IOS Press
Pages 241
Release 2021-06-22
Genre Science
ISBN 1643681737

Download Advances in Thermoelectricity: Foundational Issues, Materials and Nanotechnology Book in PDF, Epub and Kindle

The field of thermoelectricity has continued to develop rapidly in recent years and remains one of the most exciting areas of research for a materials physicist. The need for sustainable energy has added a technological momentum to the challenge of devising materials with exceptional properties such as low thermal conductivity, high electrical conductivity and a large Seebeck coefficient, and has triggered a global, interdisciplinary effort. More recently, research on thermoelectric materials has promoted and motivated a major research endeavor to clarify the factors affecting thermal conductivity in nanostructures as part of a more general effort to apply nanotechnology to enhance the performance of thermoelectric materials for use in thermoelectric generators and coolers. This book contains the lectures presented as Course 207 of the International School of Physics Enrico Fermi, Advances in Thermoelectricity: Foundational Issues, Materials, and Nanotechnology, held in Varenna, Italy from 15 – 20 July 2019. This comprehensive course aimed to provide students with a modern vision of the physics of thermoelectric phenomena, starting from the thermodynamics of thermoelectricity and from the physics of transport processes and demonstrating how material structure and nanostructure, together with defects, have been used to tailor the physical properties of advanced thermoelectrics. Special attention was also given to areas of current research – from spin-caloritronics to charge transport in polymers – and to a selected number of applications for heat recovery. Encompassing the full complexity of modern thermoelectricity and covering the most cogent themes relevant to current research, the book will be of interest to all those working in the field.