Theory of Fluid Flows Through Natural Rocks
Title | Theory of Fluid Flows Through Natural Rocks PDF eBook |
Author | G.I. Barenblatt |
Publisher | Springer |
Pages | 0 |
Release | 2010-12-07 |
Genre | Science |
ISBN | 9789048140428 |
Mechanics, the oldest branch of physics, to this day remains the basis for modern technology. This is especially evident with regard to the oil and gas industry. Almost all of the technological processes in these branches of industry, from the drilling of wells to the transporting of oil and gas products via pipelines, are mechanical in their nature. The processes of the development of oil and gas deposits are of primary importance in the whole technological chain of oil and gas extraction from the rocks and their transportation to the customer. The use of scientific methods for improving technology is a long-established tradition of oil and gas industry. For the Western reader, it is enough to mention the fundamental treatises by the outstanding American research scientist and engineer M. Muskat (1937, 1949) as well as the excellent books of Scheidegger (1960) and Collins (1961) which combine practical goals with profound theoretical analysis. The initiators of the application of mechanics for solving problems of the oil and gas industry in the U.S.S.R. were V.G. Shukhov (1981) and LS. Leibenzon (1934, 1947, 1953, 1955) whose works constitute admirable examples of Soviet technical thought. During recent times, the magnitude of oil and gas extraction has increased immensely and many reservoirs with complicated physical and geological properties have, therefore, entered into the development. The fundamental problem of enhancing oil and gas recovery from rocks has been intensively and deeply analyzed.
Theory of Fluid Flows Through Natural Rocks
Title | Theory of Fluid Flows Through Natural Rocks PDF eBook |
Author | G.I. Barenblatt |
Publisher | Springer |
Pages | 0 |
Release | 1990-05-14 |
Genre | Science |
ISBN | 9789401578998 |
Mechanics, the oldest branch of physics, to this day remains the basis for modern technology. This is especially evident with regard to the oil and gas industry. Almost all of the technological processes in these branches of industry, from the drilling of wells to the transporting of oil and gas products via pipelines, are mechanical in their nature. The processes of the development of oil and gas deposits are of primary importance in the whole technological chain of oil and gas extraction from the rocks and their transportation to the customer. The use of scientific methods for improving technology is a long-established tradition of oil and gas industry. For the Western reader, it is enough to mention the fundamental treatises by the outstanding American research scientist and engineer M. Muskat (1937, 1949) as well as the excellent books of Scheidegger (1960) and Collins (1961) which combine practical goals with profound theoretical analysis. The initiators of the application of mechanics for solving problems of the oil and gas industry in the U.S.S.R. were V.G. Shukhov (1981) and LS. Leibenzon (1934, 1947, 1953, 1955) whose works constitute admirable examples of Soviet technical thought. During recent times, the magnitude of oil and gas extraction has increased immensely and many reservoirs with complicated physical and geological properties have, therefore, entered into the development. The fundamental problem of enhancing oil and gas recovery from rocks has been intensively and deeply analyzed.
The Mathematics of Fluid Flow Through Porous Media
Title | The Mathematics of Fluid Flow Through Porous Media PDF eBook |
Author | Myron B. Allen, III |
Publisher | John Wiley & Sons |
Pages | 226 |
Release | 2021-06-08 |
Genre | Mathematics |
ISBN | 1119663873 |
Master the techniques necessary to build and use computational models of porous media fluid flow In The Mathematics of Fluid Flow Through Porous Media, distinguished professor and mathematician Dr. Myron B. Allen delivers a one-stop and mathematically rigorous source of the foundational principles of porous medium flow modeling. The book shows readers how to design intelligent computation models for groundwater flow, contaminant transport, and petroleum reservoir simulation. Discussions of the mathematical fundamentals allow readers to prepare to work on computational problems at the frontiers of the field. Introducing several advanced techniques, including the method of characteristics, fundamental solutions, similarity methods, and dimensional analysis, The Mathematics of Fluid Flow Through Porous Media is an indispensable resource for students who have not previously encountered these concepts and need to master them to conduct computer simulations. Teaching mastery of a subject that has increasingly become a standard tool for engineers and applied mathematicians, and containing 75 exercises suitable for self-study or as part of a formal course, the book also includes: A thorough introduction to the mechanics of fluid flow in porous media, including the kinematics of simple continua, single-continuum balance laws, and constitutive relationships An exploration of single-fluid flows in porous media, including Darcy’s Law, non-Darcy flows, the single-phase flow equation, areal flows, and flows with wells Practical discussions of solute transport, including the transport equation, hydrodynamic dispersion, one-dimensional transport, and transport with adsorption A treatment of multiphase flows, including capillarity at the micro- and macroscale Perfect for graduate students in mathematics, civil engineering, petroleum engineering, soil science, and geophysics, The Mathematics of Fluid Flow Through Porous Media also belongs on the bookshelves of any researcher who wishes to extend their research into areas involving flows in porous media.
Multiphase Fluid Flow in Porous and Fractured Reservoirs
Title | Multiphase Fluid Flow in Porous and Fractured Reservoirs PDF eBook |
Author | Yu-Shu Wu |
Publisher | Gulf Professional Publishing |
Pages | 420 |
Release | 2015-09-23 |
Genre | Science |
ISBN | 0128039116 |
Multiphase Fluid Flow in Porous and Fractured Reservoirs discusses the process of modeling fluid flow in petroleum and natural gas reservoirs, a practice that has become increasingly complex thanks to multiple fractures in horizontal drilling and the discovery of more unconventional reservoirs and resources. The book updates the reservoir engineer of today with the latest developments in reservoir simulation by combining a powerhouse of theory, analytical, and numerical methods to create stronger verification and validation modeling methods, ultimately improving recovery in stagnant and complex reservoirs. Going beyond the standard topics in past literature, coverage includes well treatment, Non-Newtonian fluids and rheological models, multiphase fluid coupled with geomechanics in reservoirs, and modeling applications for unconventional petroleum resources. The book equips today's reservoir engineer and modeler with the most relevant tools and knowledge to establish and solidify stronger oil and gas recovery. - Delivers updates on recent developments in reservoir simulation such as modeling approaches for multiphase flow simulation of fractured media and unconventional reservoirs - Explains analytical solutions and approaches as well as applications to modeling verification for today's reservoir problems, such as evaluating saturation and pressure profiles and recovery factors or displacement efficiency - Utilize practical codes and programs featured from online companion website
Petrophysics
Title | Petrophysics PDF eBook |
Author | Erle C. Donaldson |
Publisher | Elsevier |
Pages | 916 |
Release | 2004-01-24 |
Genre | Technology & Engineering |
ISBN | 0080497659 |
The petroleum geologist and engineer must have a working knowledge of petrophysics in order to find oil reservoirs, devise the best plan for getting it out of the ground, then start drilling. This book offers the engineer and geologist a manual to accomplish these goals, providing much-needed calculations and formulas on fluid flow, rock properties, and many other topics that are encountered every day. New updated material covers topics that have emerged in the petrochemical industry since 1997. - Contains information and calculations that the engineer or geologist must use in daily activities to find oil and devise a plan to get it out of the ground - Filled with problems and solutions, perfect for use in undergraduate, graduate, or professional courses - Covers real-life problems and cases for the practicing engineer
Geological Fluid Dynamics
Title | Geological Fluid Dynamics PDF eBook |
Author | Owen M. Phillips |
Publisher | Cambridge University Press |
Pages | 298 |
Release | 2009-02-19 |
Genre | Science |
ISBN | 0521865557 |
Describes fluid flow, transport and contamination in rocks and sediments, for graduate students and professionals in hydrology, water resources, geochemistry.
FEFLOW
Title | FEFLOW PDF eBook |
Author | Hans-Jörg G. Diersch |
Publisher | Springer Science & Business Media |
Pages | 1018 |
Release | 2013-11-22 |
Genre | Science |
ISBN | 364238739X |
FEFLOW is an acronym of Finite Element subsurface FLOW simulation system and solves the governing flow, mass and heat transport equations in porous and fractured media by a multidimensional finite element method for complex geometric and parametric situations including variable fluid density, variable saturation, free surface(s), multispecies reaction kinetics, non-isothermal flow and multidiffusive effects. FEFLOW comprises theoretical work, modeling experiences and simulation practice from a period of about 40 years. In this light, the main objective of the present book is to share this achieved level of modeling with all required details of the physical and numerical background with the reader. The book is intended to put advanced theoretical and numerical methods into the hands of modeling practitioners and scientists. It starts with a more general theory for all relevant flow and transport phenomena on the basis of the continuum approach, systematically develops the basic framework for important classes of problems (e.g., multiphase/multispecies non-isothermal flow and transport phenomena, discrete features, aquifer-averaged equations, geothermal processes), introduces finite-element techniques for solving the basic balance equations, in detail discusses advanced numerical algorithms for the resulting nonlinear and linear problems and completes with a number of benchmarks, applications and exercises to illustrate the different types of problems and ways to tackle them successfully (e.g., flow and seepage problems, unsaturated-saturated flow, advective-diffusion transport, saltwater intrusion, geothermal and thermohaline flow).