Theory of Beams

Theory of Beams
Title Theory of Beams PDF eBook
Author T. Iwiński
Publisher Elsevier
Pages 161
Release 2014-06-28
Genre Technology & Engineering
ISBN 1483186016

Download Theory of Beams Book in PDF, Epub and Kindle

Theory of Beams: The Application of the Laplace Transformation Method to Engineering Problems, Second Enlarged Edition emphasizes the method used than the broad coverage of all the significant cases that may be met in engineering practice. The content of this edition is mostly the topics presented in the first edition, but are roughly doubled. This edition is divided into four chapters, wherein most of the modifications made are included in the fourth chapter. The first chapter provides an introduction of the study, followed by discussions on theory of beams. Then, specific topics on the transform of the load function; beams with transverse and axial loading; beams and free beam on elastic foundations and non-homogeneous elastic foundations; and simple beam with terminal forces and couples resting on an elastic foundation are examined. This book ends with a table presenting transforms and functions. This text will be of interest to mathematicians and engineers, as well as mathematics and engineering students.

Structural Analysis

Structural Analysis
Title Structural Analysis PDF eBook
Author O. A. Bauchau
Publisher Springer Science & Business Media
Pages 943
Release 2009-08-03
Genre Technology & Engineering
ISBN 9048125162

Download Structural Analysis Book in PDF, Epub and Kindle

The authors and their colleagues developed this text over many years, teaching undergraduate and graduate courses in structural analysis courses at the Daniel Guggenheim School of Aerospace Engineering of the Georgia Institute of Technology. The emphasis is on clarity and unity in the presentation of basic structural analysis concepts and methods. The equations of linear elasticity and basic constitutive behaviour of isotropic and composite materials are reviewed. The text focuses on the analysis of practical structural components including bars, beams and plates. Particular attention is devoted to the analysis of thin-walled beams under bending shearing and torsion. Advanced topics such as warping, non-uniform torsion, shear deformations, thermal effect and plastic deformations are addressed. A unified treatment of work and energy principles is provided that naturally leads to an examination of approximate analysis methods including an introduction to matrix and finite element methods. This teaching tool based on practical situations and thorough methodology should prove valuable to both lecturers and students of structural analysis in engineering worldwide. This is a textbook for teaching structural analysis of aerospace structures. It can be used for 3rd and 4th year students in aerospace engineering, as well as for 1st and 2nd year graduate students in aerospace and mechanical engineering.

Beam Structures

Beam Structures
Title Beam Structures PDF eBook
Author Erasmo Carrera
Publisher John Wiley & Sons
Pages 171
Release 2011-07-28
Genre Science
ISBN 1119951046

Download Beam Structures Book in PDF, Epub and Kindle

Beam theories are exploited worldwide to analyze civil, mechanical, automotive, and aerospace structures. Many beam approaches have been proposed during the last centuries by eminent scientists such as Euler, Bernoulli, Navier, Timoshenko, Vlasov, etc. Most of these models are problem dependent: they provide reliable results for a given problem, for instance a given section and cannot be applied to a different one. Beam Structures: Classical and Advanced Theories proposes a new original unified approach to beam theory that includes practically all classical and advanced models for beams and which has become established and recognised globally as the most important contribution to the field in the last quarter of a century. The Carrera Unified Formulation (CUF) has hierarchical properties, that is, the error can be reduced by increasing the number of the unknown variables. This formulation is extremely suitable for computer implementations and can deal with most typical engineering challenges. It overcomes the problem of classical formulae that require different formulas for tension, bending, shear and torsion; it can be applied to any beam geometries and loading conditions, reaching a high level of accuracy with low computational cost, and can tackle problems that in most cases are solved by employing plate/shell and 3D formulations. Key features: compares classical and modern approaches to beam theory, including classical well-known results related to Euler-Bernoulli and Timoshenko beam theories pays particular attention to typical applications related to bridge structures, aircraft wings, helicopters and propeller blades provides a number of numerical examples including typical Aerospace and Civil Engineering problems proposes many benchmark assessments to help the reader implement the CUF if they wish to do so accompanied by a companion website hosting dedicated software MUL2 that is used to obtain the numerical solutions in the book, allowing the reader to reproduce the examples given in the book as well as to solve other problems of their own www.mul2.com Researchers of continuum mechanics of solids and structures and structural analysts in industry will find this book extremely insightful. It will also be of great interest to graduate and postgraduate students of mechanical, civil and aerospace engineering.

Theory and Design of Charged Particle Beams

Theory and Design of Charged Particle Beams
Title Theory and Design of Charged Particle Beams PDF eBook
Author Martin Reiser
Publisher John Wiley & Sons
Pages 634
Release 2008-09-26
Genre Science
ISBN 3527617639

Download Theory and Design of Charged Particle Beams Book in PDF, Epub and Kindle

Although particle accelerators are the book's main thrust, it offers a broad synoptic description of beams which applies to a wide range of other devices such as low-energy focusing and transport systems and high-power microwave sources. Develops material from first principles, basic equations and theorems in a systematic way. Assumptions and approximations are clearly indicated. Discusses underlying physics and validity of theoretical relationships, design formulas and scaling laws. Features a significant amount of recent work including image effects and the Boltzmann line charge density profiles in bunched beams.

Nonlocal Euler–Bernoulli Beam Theories

Nonlocal Euler–Bernoulli Beam Theories
Title Nonlocal Euler–Bernoulli Beam Theories PDF eBook
Author Jingkai Chen
Publisher Springer Nature
Pages 59
Release 2021-02-27
Genre Technology & Engineering
ISBN 3030697886

Download Nonlocal Euler–Bernoulli Beam Theories Book in PDF, Epub and Kindle

This book presents a comparative study on the static responses of the Euler-Bernoulli beam governed by nonlocal theories, including the Eringen’s stress-gradient beam theory, the Mindlin’s strain-gradient beam theory, the higher-order beam theory and the peridynamic beam theory. Benchmark examples are solved analytically and numerically using these nonlocal beam equations, including the simply-supported beam, the clamped-clamped beam and the cantilever beam. Results show that beam deformations governed by different nonlocal theories at different boundary conditions show complex behaviors. Specifically, the Eringen’s stress-gradient beam equation and the peridynamic beam equation yield a much softer beam deformation for simply-supported beam and clamped-clamped beam, while the beam governed by the Mindlin’s strain-gradient beam equation is much stiffer. The cantilever beam exhibits a completely different behavior. The higher-order beam equation can be stiffer or softer depending on the values of the two nonlocal parameters. Moreover, the deformation fluctuation of the truncated order peridynamic beam equation is observed and explained from the singularity aspect of the solution expression. This research casts light on the fundamental explanation of nonlocal beam theories in nano-electromechanical systems.

Nonlinear Composite Beam Theory

Nonlinear Composite Beam Theory
Title Nonlinear Composite Beam Theory PDF eBook
Author Dewey H. Hodges
Publisher Progress in Astronautics and A
Pages 344
Release 2006
Genre Technology & Engineering
ISBN

Download Nonlinear Composite Beam Theory Book in PDF, Epub and Kindle

From an authoritative expert whose work on modern helicopter rotor blade analysis has spanned over three decades, comes the first consistent and rigorous presentation of beam theory. Beginning with an overview of the theory developed over the last 60 years, Dr. Hodges addresses the kinematics of beam deformation, provides a simple way to characterize strain in an initially curved and twisted beam, and offers cross-sectional analysis for beams with arbitrary cross sections and composed of arbitrary materials. He goes on to present a way to accurately recover all components of cross-sectional strain and stress before providing a natural one-dimensional (1-D) theory of beams. Sample results for both cross-sectional and 1-D analysis are presented as is a parallel treatment for thin-walled beams.

Random Light Beams

Random Light Beams
Title Random Light Beams PDF eBook
Author Olga Korotkova
Publisher CRC Press
Pages 366
Release 2017-12-19
Genre Science
ISBN 1439819513

Download Random Light Beams Book in PDF, Epub and Kindle

Random Light Beams: Theory and Applications contemplates the potential in harnessing random light. This book discusses light matter interactions, and concentrates on the various phenomena associated with beam-like fields. It explores natural and man-made light fields and gives an overview of recently introduced families of random light beams. It outlines mathematical tools for analysis, suggests schemes for realization, and discusses possible applications. The book introduces the essential concepts needed for a deeper understanding of the subject, discusses various classes of deterministic paraxial beams and examines random scalar beams. It highlights electromagnetic random beams and matters relating to generation, propagation in free space and various media, and discusses transmission through optical systems. It includes applications that benefit from the use of random beams, as well as the interaction of beams with deterministic optical systems. • Includes detailed mathematical description of different model sources and beams • Explores a wide range of man-made and natural media for beam interaction • Contains more than 100 illustrations on beam behavior • Offers information that is based on the scientific results of the last several years • Points to general methods for dealing with random beams, on the basis of which the readers can do independent research It gives examples of light propagation through the human eye, laser resonators, and negative phase materials. It discusses in detail propagation of random beams in random media, the scattering of random beams from collections of scatterers and thin random layers as well as the possible uses for these beams in imaging, tomography, and smart illumination.