Hyperbolic Problems: Theory, Numerics, Applications
Title | Hyperbolic Problems: Theory, Numerics, Applications PDF eBook |
Author | Sylvie Benzoni-Gavage |
Publisher | Springer Science & Business Media |
Pages | 1117 |
Release | 2008-01-12 |
Genre | Mathematics |
ISBN | 3540757120 |
This volume contains papers that were presented at HYP2006, the eleventh international Conference on Hyperbolic Problems: Theory, Numerics and Applications. This biennial series of conferences has become one of the most important international events in Applied Mathematics. As computers became more and more powerful, the interplay between theory, modeling, and numerical algorithms gained considerable impact, and the scope of HYP conferences expanded accordingly.
Theory, Numerics and Applications of Hyperbolic Problems II
Title | Theory, Numerics and Applications of Hyperbolic Problems II PDF eBook |
Author | Christian Klingenberg |
Publisher | Springer |
Pages | 714 |
Release | 2018-08-01 |
Genre | Mathematics |
ISBN | 9783319915470 |
The second of two volumes, this edited proceedings book features research presented at the XVI International Conference on Hyperbolic Problems held in Aachen, Germany in summer 2016. It focuses on the theoretical, applied, and computational aspects of hyperbolic partial differential equations (systems of hyperbolic conservation laws, wave equations, etc.) and of related mathematical models (PDEs of mixed type, kinetic equations, nonlocal or/and discrete models) found in the field of applied sciences.
Theory, Numerics and Applications of Hyperbolic Problems I
Title | Theory, Numerics and Applications of Hyperbolic Problems I PDF eBook |
Author | Christian Klingenberg |
Publisher | Springer |
Pages | 685 |
Release | 2018-06-23 |
Genre | Mathematics |
ISBN | 3319915452 |
The first of two volumes, this edited proceedings book features research presented at the XVI International Conference on Hyperbolic Problems held in Aachen, Germany in summer 2016. It focuses on the theoretical, applied, and computational aspects of hyperbolic partial differential equations (systems of hyperbolic conservation laws, wave equations, etc.) and of related mathematical models (PDEs of mixed type, kinetic equations, nonlocal or/and discrete models) found in the field of applied sciences.
Finite Volume Methods for Hyperbolic Problems
Title | Finite Volume Methods for Hyperbolic Problems PDF eBook |
Author | Randall J. LeVeque |
Publisher | Cambridge University Press |
Pages | 582 |
Release | 2002-08-26 |
Genre | Mathematics |
ISBN | 1139434187 |
This book, first published in 2002, contains an introduction to hyperbolic partial differential equations and a powerful class of numerical methods for approximating their solution, including both linear problems and nonlinear conservation laws. These equations describe a wide range of wave propagation and transport phenomena arising in nearly every scientific and engineering discipline. Several applications are described in a self-contained manner, along with much of the mathematical theory of hyperbolic problems. High-resolution versions of Godunov's method are developed, in which Riemann problems are solved to determine the local wave structure and limiters are then applied to eliminate numerical oscillations. These methods were originally designed to capture shock waves accurately, but are also useful tools for studying linear wave-propagation problems, particularly in heterogenous material. The methods studied are implemented in the CLAWPACK software package and source code for all the examples presented can be found on the web, along with animations of many of the simulations. This provides an excellent learning environment for understanding wave propagation phenomena and finite volume methods.
Hyperbolic Problems: Theory, Numerics, Applications. Volume I
Title | Hyperbolic Problems: Theory, Numerics, Applications. Volume I PDF eBook |
Author | Carlos Parés |
Publisher | Springer Nature |
Pages | 376 |
Release | |
Genre | |
ISBN | 3031552601 |
Numerical Approximation of Hyperbolic Systems of Conservation Laws
Title | Numerical Approximation of Hyperbolic Systems of Conservation Laws PDF eBook |
Author | Edwige Godlewski |
Publisher | Springer Nature |
Pages | 846 |
Release | 2021-08-28 |
Genre | Mathematics |
ISBN | 1071613448 |
This monograph is devoted to the theory and approximation by finite volume methods of nonlinear hyperbolic systems of conservation laws in one or two space variables. It follows directly a previous publication on hyperbolic systems of conservation laws by the same authors. Since the earlier work concentrated on the mathematical theory of multidimensional scalar conservation laws, this book will focus on systems and the theoretical aspects which are needed in the applications, such as the solution of the Riemann problem and further insights into more sophisticated problems, with special attention to the system of gas dynamics. This new edition includes more examples such as MHD and shallow water, with an insight on multiphase flows. Additionally, the text includes source terms and well-balanced/asymptotic preserving schemes, introducing relaxation schemes and addressing problems related to resonance and discontinuous fluxes while adding details on the low Mach number situation.
Hyperbolic Partial Differential Equations
Title | Hyperbolic Partial Differential Equations PDF eBook |
Author | Andreas Meister |
Publisher | Vieweg+Teubner Verlag |
Pages | 0 |
Release | 2011-12-30 |
Genre | Mathematics |
ISBN | 9783322802293 |
The book gives an introduction to the fundamental properties of hyperbolic partial differential equations und their appearance in the mathematical modelling of various problems from practice. It shows in an unique manner concepts for the numerical treatment of such equations starting from basic algorithms up actual research topics in this area. The numerical methods discussed are central and upwind schemes for structured and unstructured grids based on ENO and WENO reconstructions, pressure correction schemes like SIMPLE and PISO as well as asymptotic-induced algorithms for low-Mach number flows.