Theory and Design Methods of Special Space Orbits
Title | Theory and Design Methods of Special Space Orbits PDF eBook |
Author | Yasheng Zhang |
Publisher | Springer |
Pages | 248 |
Release | 2016-11-25 |
Genre | Technology & Engineering |
ISBN | 9811029482 |
This book focuses on the theory and design of special space orbits. Offering a systematic and detailed introduction to the hovering orbit, spiral cruising orbit, multi-target rendezvous orbit, initiative approaching orbit, responsive orbit and earth pole-sitter orbit, it also discusses the concept, theory, design methods and application of special space orbits, particularly the design and control method based on kinematics and astrodynamics. In addition the book presents the latest research and its application in space missions. It is intended for researchers, engineers and postgraduates, especially those working in the fields of orbit design and control, as well as space-mission planning and research.
Orbital Mechanics
Title | Orbital Mechanics PDF eBook |
Author | John E. Prussing |
Publisher | Oxford University Press, USA |
Pages | 0 |
Release | 2013 |
Genre | Orbital mechanics |
ISBN | 9780199837700 |
For nearly two decades, Orbital Mechanics by John E. Prussing and Bruce A. Conway has been the most authoritative textbook on space trajectories and orbital transfers. Completely revised and updated, this edition provides: * Current data and statistics, along with coverage of new research and the most recent developments in the field * Three new chapters: "The Three-Body Problem" (Ch. 4), "Continuous-Thrust Transfer" (Ch. 8), and "Canonical Systems and the Lagrange Equations" (Ch. 12) * New material on multiple-revolution Lambert solutions, gravity-assist applications, and the state transition matrix for a general conic orbit * New examples and problems throughout * A new Companion Website with PowerPoint slides (www.oup.com/us/prussing)
Dynamical Systems
Title | Dynamical Systems PDF eBook |
Author | Wang Sang Koon |
Publisher | Springer |
Pages | 336 |
Release | 2011-06-01 |
Genre | Mathematics |
ISBN | 9780387495156 |
This book considers global solutions to the restricted three-body problem from a geometric point of view. The authors seek dynamical channels in the phase space which wind around the planets and moons and naturally connect them. These low energy passageways could slash the amount of fuel spacecraft need to explore and develop our solar system. In order to effectively exploit these passageways, the book addresses the global transport. It goes beyond the traditional scope of libration point mission design, developing tools for the design of trajectories which take full advantage of natural three or more body dynamics, thereby saving precious fuel and gaining flexibility in mission planning. This is the key for the development of some NASA mission trajectories, such as low energy libration point orbit missions (e.g., the sample return Genesis Discovery Mission), low energy lunar missions and low energy tours of outer planet moon systems, such as a mission to tour and explore in detail the icy moons of Jupiter. This book can serve as a valuable resource for graduate students and advanced undergraduates in applied mathematics and aerospace engineering, as well as a manual for practitioners who work on libration point and deep space missions in industry and at government laboratories. the authors include a wealth of background material, but also bring the reader up to a portion of the research frontier.
Spacecraft Attitude Determination and Control
Title | Spacecraft Attitude Determination and Control PDF eBook |
Author | J.R. Wertz |
Publisher | Springer Science & Business Media |
Pages | 877 |
Release | 2012-12-06 |
Genre | Technology & Engineering |
ISBN | 9400999070 |
Roger D. Werking Head, Attitude Determination and Control Section National Aeronautics and Space Administration/ Goddard Space Flight Center Extensiye work has been done for many years in the areas of attitude determination, attitude prediction, and attitude control. During this time, it has been difficult to obtain reference material that provided a comprehensive overview of attitude support activities. This lack of reference material has made it difficult for those not intimately involved in attitude functions to become acquainted with the ideas and activities which are essential to understanding the various aspects of spacecraft attitude support. As a result, I felt the need for a document which could be used by a variety of persons to obtain an understanding of the work which has been done in support of spacecraft attitude objectives. It is believed that this book, prepared by the Computer Sciences Corporation under the able direction of Dr. James Wertz, provides this type of reference. This book can serve as a reference for individuals involved in mission planning, attitude determination, and attitude dynamics; an introductory textbook for stu dents and professionals starting in this field; an information source for experimen ters or others involved in spacecraft-related work who need information on spacecraft orientation and how it is determined, but who have neither the time nor the resources to pursue the varied literature on this subject; and a tool for encouraging those who could expand this discipline to do so, because much remains to be done to satisfy future needs.
Orbital Mechanics for Engineering Students
Title | Orbital Mechanics for Engineering Students PDF eBook |
Author | Howard D. Curtis |
Publisher | Elsevier |
Pages | 740 |
Release | 2009-10-26 |
Genre | Technology & Engineering |
ISBN | 0080887848 |
Orbital Mechanics for Engineering Students, Second Edition, provides an introduction to the basic concepts of space mechanics. These include vector kinematics in three dimensions; Newton's laws of motion and gravitation; relative motion; the vector-based solution of the classical two-body problem; derivation of Kepler's equations; orbits in three dimensions; preliminary orbit determination; and orbital maneuvers. The book also covers relative motion and the two-impulse rendezvous problem; interplanetary mission design using patched conics; rigid-body dynamics used to characterize the attitude of a space vehicle; satellite attitude dynamics; and the characteristics and design of multi-stage launch vehicles. Each chapter begins with an outline of key concepts and concludes with problems that are based on the material covered. This text is written for undergraduates who are studying orbital mechanics for the first time and have completed courses in physics, dynamics, and mathematics, including differential equations and applied linear algebra. Graduate students, researchers, and experienced practitioners will also find useful review materials in the book. - NEW: Reorganized and improved discusions of coordinate systems, new discussion on perturbations and quarternions - NEW: Increased coverage of attitude dynamics, including new Matlab algorithms and examples in chapter 10 - New examples and homework problems
Satellite Orbits in an Atmosphere
Title | Satellite Orbits in an Atmosphere PDF eBook |
Author | D.G. King-Hele |
Publisher | Springer |
Pages | 291 |
Release | 1987-08-31 |
Genre | Science |
ISBN | 9780216922525 |
Scientific and Technical Aerospace Reports
Title | Scientific and Technical Aerospace Reports PDF eBook |
Author | |
Publisher | |
Pages | 892 |
Release | 1994 |
Genre | Aeronautics |
ISBN |