The Theory of Turbulent Jets
Title | The Theory of Turbulent Jets PDF eBook |
Author | Genrikh Naumovich Abramovich |
Publisher | Mit Press |
Pages | 671 |
Release | 1963 |
Genre | Technology & Engineering |
ISBN | 9780262010085 |
The author's first monograph on turbulent jets, in 1936, dealt solely with a free submerged jet. Since that time, the theory of the turbulent jet has been developed in many published works both in the USSR and abroad: it has been enriched with a large amount of experimental material and has been applied in many new fields of engineering. In the last 10 years very substantial progress has been made, and it has now become possible to go beyond the free submerged jet and to solve the problem of a jet in a stream of fluid, to take into account the interaction between the jet and solid walls, to ascertain the relationship between the contour of the jet and the ratio of its density to the density of the surrounding medium, and to establish the characteristic features of a supersonic jet. This monograph contains the results of further research by the author and his colleagues, as well as a critical reappraisal of the more important theoretical and experimental data published by other investigators. The first section deals with the theory of a turbulent jet of incompressible fluid. It gives a systematic analysis of numerous experimental data on velocity profiles, temperature, and the impurity concentration, as well as the outlines of the turbulent mixing lone. The second section sets forth the theory of turbulent gas jets, including strongly preheated and supersonic jets. The theory of free turbulence in a gas, suitable in principle for any degree of compressibility, is revised, and the equations are derived for motion and heat exchange in the boundary layer of a jet at very high temperature. The third section solves several problems of the spreading of jets in finite and semifinite space, and the fourth section describes various applications of the theory of jets, many of which are reported for the first time or have been significantly revised.
Turbulent Jets
Title | Turbulent Jets PDF eBook |
Author | N. Rajaratnam |
Publisher | Elsevier |
Pages | 315 |
Release | 1976-01-01 |
Genre | Science |
ISBN | 0080869963 |
Turbulent Jets
Turbulent Jets and Plumes
Title | Turbulent Jets and Plumes PDF eBook |
Author | Joseph Hun-wei Lee |
Publisher | Springer Science & Business Media |
Pages | 391 |
Release | 2012-12-06 |
Genre | Science |
ISBN | 1461504074 |
Jets and plumes are shear flows produced by momentum and buoyancy forces. Examples include smokestack emissions, fires and volcano eruptions, deep sea vents, thermals, sewage discharges, thermal effluents from power stations, and ocean dumping of sludge. Knowledge of turbulent mixing by jets and plumes is important for environmental control, impact and risk assessment. Turbulent Jets and Plumes introduces the fundamental concepts and develops a Lagrangian approach to model these shear flows. This theme persists throughout the text, starting from simple cases and building towards the practically important case of a turbulent buoyant jet in a density-stratified crossflow. Basic ideas are illustrated by ample use of flow visualization using the laser-induced fluorescence technique. The text includes many illustrative worked examples, comparisons of model predictions with laboratory and field data, and classroom tested problems. An interactive PC-based virtual-reality modelling software (VISJET) is also provided. Engineering and science students, researchers and practitioners may use the book both as an introduction to the subject and as a reference in hydraulics and environmental fluid mechanics.
Theory of Jets in Ideal Fluids
Title | Theory of Jets in Ideal Fluids PDF eBook |
Author | M. I. Gurevich |
Publisher | Academic Press |
Pages | 602 |
Release | 2014-05-12 |
Genre | Technology & Engineering |
ISBN | 1483261751 |
Theory of Jets in Ideal Fluids focuses on the use of hydrodynamics in the theory of jets in ideal fluids. The publication first offers information on the introduction to the theory of plane and steady jet flows and flow from a vessel. Discussions focus on flow from a rectangular vessel with an orifice at a corner; vessel with a funnel-shaped bottom and Borda's nozzle; flow from the opening between two flat plates; and Kirchhoff's method. The text then examines infinite flow past a polygonal obstacle, flow around curvilinear obstacles, and flow around a body at small cavitation number. Topics include cavitating flow around a circular cylinder; cavitating flow around a thin profile at an arbitrary angle of attack; cavitating flow around a flat plate; Villat's integro-differential equation and the existence and uniqueness of the solution; and flow past a plate with the separation from its upper surface. The book takes a look at the flow of a heavy fluid and the effects of surface tension, axisymmetric flow, jet flow of compressible fluid, and unsteady flows. The publication is a dependable reference for hydrodynamicists wanting to explore the theory of jets in ideal fluids.
The Theory of Turbulent Jets
Title | The Theory of Turbulent Jets PDF eBook |
Author | G. N. Abramovich |
Publisher | Mit Press |
Pages | 671 |
Release | 1963 |
Genre | Technology & Engineering |
ISBN | 9780262511377 |
The author's first monograph on turbulent jets, in 1936, dealt solely with a free submerged jet. Since that time, the theory of the turbulent jet has been developed in many published works both in the USSR and abroad: it has been enriched with a large amount of experimental material and has been applied in many new fields of engineering. In the last 10 years very substantial progress has been made, and it has now become possible to go beyond the free submerged jet and to solve the problem of a jet in a stream of fluid, to take into account the interaction between the jet and solid walls, to ascertain the relationship between the contour of the jet and the ratio of its density to the density of the surrounding medium, and to establish the characteristic features of a supersonic jet. This monograph contains the results of further research by the author and his colleagues, as well as a critical reappraisal of the more important theoretical and experimental data published by other investigators. The first section deals with the theory of a turbulent jet of incompressible fluid. It gives a systematic analysis of numerous experimental data on velocity profiles, temperature, and the impurity concentration, as well as the outlines of the turbulent mixing lone. The second section sets forth the theory of turbulent gas jets, including strongly preheated and supersonic jets. The theory of free turbulence in a gas, suitable in principle for any degree of compressibility, is revised, and the equations are derived for motion and heat exchange in the boundary layer of a jet at very high temperature. The third section solves several problems of the spreading of jets in finite and semifinite space, and the fourth section describes various applications of the theory of jets, many of which are reported for the first time or have been significantly revised.
The Structure of Turbulent Shear Flow
Title | The Structure of Turbulent Shear Flow PDF eBook |
Author | A. A. R. Townsend |
Publisher | Cambridge University Press |
Pages | 450 |
Release | 1976 |
Genre | Mathematics |
ISBN | 9780521298193 |
Develops a physical theory from the mass of experimental results, with revisions to reflect advances of recent years.
A First Course in Turbulence
Title | A First Course in Turbulence PDF eBook |
Author | Henk Tennekes |
Publisher | MIT Press |
Pages | 316 |
Release | 2018-04-27 |
Genre | Science |
ISBN | 0262536307 |
This is the first book specifically designed to offer the student a smooth transitionary course between elementary fluid dynamics (which gives only last-minute attention to turbulence) and the professional literature on turbulent flow, where an advanced viewpoint is assumed. The subject of turbulence, the most forbidding in fluid dynamics, has usually proved treacherous to the beginner, caught in the whirls and eddies of its nonlinearities and statistical imponderables. This is the first book specifically designed to offer the student a smooth transitionary course between elementary fluid dynamics (which gives only last-minute attention to turbulence) and the professional literature on turbulent flow, where an advanced viewpoint is assumed. Moreover, the text has been developed for students, engineers, and scientists with different technical backgrounds and interests. Almost all flows, natural and man-made, are turbulent. Thus the subject is the concern of geophysical and environmental scientists (in dealing with atmospheric jet streams, ocean currents, and the flow of rivers, for example), of astrophysicists (in studying the photospheres of the sun and stars or mapping gaseous nebulae), and of engineers (in calculating pipe flows, jets, or wakes). Many such examples are discussed in the book. The approach taken avoids the difficulties of advanced mathematical development on the one side and the morass of experimental detail and empirical data on the other. As a result of following its midstream course, the text gives the student a physical understanding of the subject and deepens his intuitive insight into those problems that cannot now be rigorously solved. In particular, dimensional analysis is used extensively in dealing with those problems whose exact solution is mathematically elusive. Dimensional reasoning, scale arguments, and similarity rules are introduced at the beginning and are applied throughout. A discussion of Reynolds stress and the kinetic theory of gases provides the contrast needed to put mixing-length theory into proper perspective: the authors present a thorough comparison between the mixing-length models and dimensional analysis of shear flows. This is followed by an extensive treatment of vorticity dynamics, including vortex stretching and vorticity budgets. Two chapters are devoted to boundary-free shear flows and well-bounded turbulent shear flows. The examples presented include wakes, jets, shear layers, thermal plumes, atmospheric boundary layers, pipe and channel flow, and boundary layers in pressure gradients. The spatial structure of turbulent flow has been the subject of analysis in the book up to this point, at which a compact but thorough introduction to statistical methods is given. This prepares the reader to understand the stochastic and spectral structure of turbulence. The remainder of the book consists of applications of the statistical approach to the study of turbulent transport (including diffusion and mixing) and turbulent spectra.