The Theory of Emulsions and Emulsification
Title | The Theory of Emulsions and Emulsification PDF eBook |
Author | William Clayton |
Publisher | |
Pages | 192 |
Release | 1923 |
Genre | Emulsions |
ISBN |
The Theory of Emulsions and Emulsification
Title | The Theory of Emulsions and Emulsification PDF eBook |
Author | William Clayton |
Publisher | |
Pages | 182 |
Release | 1923 |
Genre | Emulsions |
ISBN |
The Theory of Emulsions and Their Technical Treatment
Title | The Theory of Emulsions and Their Technical Treatment PDF eBook |
Author | William Clayton |
Publisher | |
Pages | 306 |
Release | 1928 |
Genre | Emulsions |
ISBN |
Emulsions
Title | Emulsions PDF eBook |
Author | Tharwat F. Tadros |
Publisher | Walter de Gruyter GmbH & Co KG |
Pages | 242 |
Release | 2016-03-21 |
Genre | Technology & Engineering |
ISBN | 3110452243 |
Chapter 1 General Introduction Definition of emulsions and the role of the emulsifier. Classification based on the nature of the emulsifier. Classification based on the structure of the system. General instability problems with emulsions : creaming/sedimentation, flocculation, Ostwald ripening, coalescence and phase inversion. Importance of emulsions in various industrial applications. Chapter 2 Thermodynamics of Emulsion Formation and Breakdown Application of the second law of thermodynamics for emulsion formation : Balance of energy and entropy and non-spontaneous formation of emulsions. Breakdown of the emulsion by flocculation and coalescence in the absence of an emulsifier. Role of the emulsifier in preventing flocculation and coalescence by creating an energy barrier resulting from the repulsive energies between the droplets. Chapter 3 Interaction Forces between Emulsion Droplets Van der Waals attraction and its dependence on droplet size, Hamaker constant and separation distance between the droplets. Electrostatic repulsion resulting from the presence of electrical double layers and its dependence on surface (or zeta) potential and electrolyte concentration and valency. Combination of the van der Waals attraction with double layer repulsion and the theory of colloid stability. Steric repulsion resulting from the presence of adsorbed non-ionic surfactants and polymers. Combination of van der Waals attraction with steric repulsion and the theory of steric stabilisation. Chapter 4 Adsorption of Surfactants at the Oil/Water Interface Thermodynamic analysis of surfactant adsorption and the Gibbs adsorption isotherm. Calculation of the amount of surfactant adsorption and area per surfactant molecule at the interface. Experimental techniques for measuring the interfacial tension. Chapter 5 Mechanism of Emulsification and the Role of the Emulsifier Description of the factors responsible for droplet deformation and its break-up. Role of surfactant in preventing coalescence during emulsification. Definition of the Gibbs dilational elasticity and the Marangoni effect in preventing coalescence. Chapter 6 Methods of Emulsification Pipe flow, static mixers and high speed stirrers (rotor-stator mixer). Laminar and turbulent flow. Membrane emulsification. High pressure homogenisers and ultrasonic methods. Chapter 7 Selection of Emulsifiers The hydrophilic-lipophilic-balance (HLB) and its application in surfactant selection. Calculation of HLB numbers and the effect of the nature of the oil phase. The phase inversion temperature (PIT) method for emulsifier selection. The cohesive energy ratio method for emulsifier selection. Chapter 8 Creaming/Sedimentation of Emulsions and its prevention Driving force for creaming/sedimentation: effect of gravity, droplet size and density difference between the oil and continuous phase. Calculation of the rate of creaming/sedimentation in dilute emulsions. Influence of increase of the volume fraction of the disperse phase on the rate of creaming/sedimentation. Reduction of creaming/sedimentation: Balance of the density of the two phases, reduction of droplet size and effect of addition of ''thickeners'. Chapter 9 Flocculation of Emulsions and its Prevention Factors affecting flocculation. Calculation of fast and slow flocculation rate. Definition of stability ratio and its dependence on electrolyte concentration and valency. Definition of the critical coagulation concentration and its dependence on electrolyte valency. Reduction of flocculation by enhancing the repulsive forces. Chapter 10 Ostwald Ripening and its Reduction Factors responsible for Ostwald ripening : difference in solubility between small and large droplets and the Kelvin equation. Calculation of the rate of Ostwald ripening. Reduction of Ostwald ripening by incorporation of a small amount of highly insoluble oil. Reduction of Ostwald ripening by the use of strongly adsorbed polymeric surfactant and enhancement of the Gibbs elasticity. Chapter 11 Emulsion Coalescence and its Prevention Driving force for emulsion coalescence : Thinning and disruption of the liquid film between the droplets. The concept of disjoining pressure for prevention of coalescence. Methods for reduction or elimination of coalescence : Use of mixed surfactant films, use of lamellar liquid crystalline phases and use of polymeric surfactants. Chapter 12 Phase Inversion and its Prevention Distinction between catastrophic and transient phase inversion. Influence of the disperse volume fraction and surfactant HLB number. Explanation of the factors responsible for phase inversion. Chapter 13 Characterisation of Emulsions Measurement of droplet size distribution : Optical microscopy and image analysis. Phase contrast and polarising microscopyDiffraction methods. Confocal laser microscopy. Back scattering methods Chapter 14 Industrial Application of Emulsions 14.1 Application in Pharmacy 14.2 Application in Cosmetics 14.3 Application in Agrochemicals 14.4 Application in Paints 14.5 Application in the Oil Industry
Theory and Practice of Emulsion Technology
Title | Theory and Practice of Emulsion Technology PDF eBook |
Author | A.L. Smith |
Publisher | Elsevier |
Pages | 359 |
Release | 2012-12-02 |
Genre | Technology & Engineering |
ISBN | 0323154379 |
Theory and Practice of Emulsion Technology covers the proceedings of the Theory and Practice of Emulsion Technology Symposium, held at Brunel University on September 16-18, 1974. This book is organized into four sessions encompassing 19 chapters. The opening session deals with the emulsification process and emulsion polymerization, as well as the adsorption behavior of polyelectrolyte-stabilized emulsions. The following session examines the rheological properties, stability, and fluid mechanics of emulsions. This session also looks into the role of protein conformation and crude oil-water interfacial properties in emulsion stability. The third session highlights the preparation, formation, properties, and application of bitumen emulsions. The concluding session describes the process of spontaneous emulsification; the steric emulsion stabilization; the interfacial measurements of oil-in-water emulsions; and the influence of the disperse phase on emulsion stability. This book will be of value to chemists, chemical and process engineers, and researchers.
Modern Aspects of Emulsion Science
Title | Modern Aspects of Emulsion Science PDF eBook |
Author | Bernard P Binks |
Publisher | Royal Society of Chemistry |
Pages | 443 |
Release | 2007-10-31 |
Genre | Technology & Engineering |
ISBN | 1847551475 |
Emulsions occur either as end products or during the processing of products in a huge range of areas including the food, agrochemical, pharmaceutical, paint and oil industries. Despite over one hundred years of research in the subject, however, a quantitative understanding of emulsions has been lacking. Modern Aspects of Emulsion Science presents a comprehensive description of both the scientific principles in the field and the very latest advances in research in this important area of surface and colloid science. Topics covered include emulsion formation, type, stability (creaming, flocculation, ripening, coalescence), monodisperse and gel emulsions, and applications. Emphasis has been placed on relating the chemistry of the surfactant or protein adsorbed at the oil-water interface to the principles of the physics involved in the bulk emulsion property. The book has been written by a collection of the world's leading experts in the field, and covers both experimental and theoretical approaches. Modern Aspects of Emulsion Science fills a real gap in the market, being the only book of its kind in print. As such it will prove essential reading for graduates and researchers in this subject, in both academia and industry.
Emulsions: Structure, Stability and Interactions
Title | Emulsions: Structure, Stability and Interactions PDF eBook |
Author | Dimiter N. Petsev |
Publisher | Elsevier |
Pages | 781 |
Release | 2004-10-14 |
Genre | Science |
ISBN | 0080472656 |
Emulsions: Structure, Stability and Interactions is the perfect handbook for scientists looking to obtain up-to-date knowledge about the fundamentals of emulsion science, and those looking to familiarize themselves with the subject in greater detail. As a 'stand-alone' source of information, it is also ideal for solving the practical issues encountered daily in the field of emulsion science. While each chapter presents a concise review on a specific topic, the book offers a consistent presentation of the important physical concepts relevant to emulsions. Some of the topics covered include statistical mechanics of fluid interfaces, the structure of fluid interfaces determined by neutron scattering, hydrodynamic interactions and stability of emulsion films, theory of emulsion flocculation, coalescence kinetics of Brownian emulsions, and Brownian dynamics simulation of emulsion stability. - Full and comprehensive presentations - Rigorous approach to each topic, providing in-depth information - Acts as a 'stand-alone' source of information