The Stability of Cylindrical Pendant Drops

The Stability of Cylindrical Pendant Drops
Title The Stability of Cylindrical Pendant Drops PDF eBook
Author John McCuan
Publisher American Mathematical Soc.
Pages 122
Release 2018-01-16
Genre Mathematics
ISBN 1470409380

Download The Stability of Cylindrical Pendant Drops Book in PDF, Epub and Kindle

The author considers the stability of certain liquid drops in a gravity field satisfying a mixed boundary condition. He also considers as special cases portions of cylinders that model either the zero gravity case or soap films with the same kind of boundary behavior.

Perihelia Reduction and Global Kolmogorov Tori in the Planetary Problem

Perihelia Reduction and Global Kolmogorov Tori in the Planetary Problem
Title Perihelia Reduction and Global Kolmogorov Tori in the Planetary Problem PDF eBook
Author Gabriella Pinzari
Publisher American Mathematical Soc.
Pages 104
Release 2018-10-03
Genre Mathematics
ISBN 1470441020

Download Perihelia Reduction and Global Kolmogorov Tori in the Planetary Problem Book in PDF, Epub and Kindle

The author proves the existence of an almost full measure set of -dimensional quasi-periodic motions in the planetary problem with masses, with eccentricities arbitrarily close to the Levi–Civita limiting value and relatively high inclinations. This extends previous results, where smallness of eccentricities and inclinations was assumed. The question had been previously considered by V. I. Arnold in the 1960s, for the particular case of the planar three-body problem, where, due to the limited number of degrees of freedom, it was enough to use the invariance of the system by the SO(3) group. The proof exploits nice parity properties of a new set of coordinates for the planetary problem, which reduces completely the number of degrees of freedom for the system (in particular, its degeneracy due to rotations) and, moreover, is well fitted to its reflection invariance. It allows the explicit construction of an associated close to be integrable system, replacing Birkhoff normal form, a common tool of previous literature.

Systems of Transversal Sections Near Critical Energy Levels of Hamiltonian Systems in $\mathbb {R}^4$

Systems of Transversal Sections Near Critical Energy Levels of Hamiltonian Systems in $\mathbb {R}^4$
Title Systems of Transversal Sections Near Critical Energy Levels of Hamiltonian Systems in $\mathbb {R}^4$ PDF eBook
Author Naiara V. de Paulo
Publisher American Mathematical Soc.
Pages 118
Release 2018-03-19
Genre Mathematics
ISBN 1470428016

Download Systems of Transversal Sections Near Critical Energy Levels of Hamiltonian Systems in $\mathbb {R}^4$ Book in PDF, Epub and Kindle

In this article the authors study Hamiltonian flows associated to smooth functions R R restricted to energy levels close to critical levels. They assume the existence of a saddle-center equilibrium point in the zero energy level . The Hamiltonian function near is assumed to satisfy Moser's normal form and is assumed to lie in a strictly convex singular subset of . Then for all small, the energy level contains a subset near , diffeomorphic to the closed -ball, which admits a system of transversal sections , called a foliation. is a singular foliation of and contains two periodic orbits and as binding orbits. is the Lyapunoff orbit lying in the center manifold of , has Conley-Zehnder index and spans two rigid planes in . has Conley-Zehnder index and spans a one parameter family of planes in . A rigid cylinder connecting to completes . All regular leaves are transverse to the Hamiltonian vector field. The existence of a homoclinic orbit to in follows from this foliation.

Boundary Conditions and Subelliptic Estimates for Geometric Kramers-Fokker-Planck Operators on Manifolds with Boundaries

Boundary Conditions and Subelliptic Estimates for Geometric Kramers-Fokker-Planck Operators on Manifolds with Boundaries
Title Boundary Conditions and Subelliptic Estimates for Geometric Kramers-Fokker-Planck Operators on Manifolds with Boundaries PDF eBook
Author Francis Nier
Publisher American Mathematical Soc.
Pages 156
Release 2018-03-19
Genre Mathematics
ISBN 1470428024

Download Boundary Conditions and Subelliptic Estimates for Geometric Kramers-Fokker-Planck Operators on Manifolds with Boundaries Book in PDF, Epub and Kindle

This article is concerned with the maximal accretive realizations of geometric Kramers-Fokker-Planck operators on manifolds with boundaries. A general class of boundary conditions is introduced which ensures the maximal accretivity and some global subelliptic estimates. Those estimates imply nice spectral properties as well as exponential decay properties for the associated semigroup. Admissible boundary conditions cover a wide range of applications for the usual scalar Kramer-Fokker-Planck equation or Bismut's hypoelliptic laplacian.

Sobolev, Besov and Triebel-Lizorkin Spaces on Quantum Tori

Sobolev, Besov and Triebel-Lizorkin Spaces on Quantum Tori
Title Sobolev, Besov and Triebel-Lizorkin Spaces on Quantum Tori PDF eBook
Author Xiao Xiong
Publisher American Mathematical Soc.
Pages 130
Release 2018-03-19
Genre Mathematics
ISBN 1470428067

Download Sobolev, Besov and Triebel-Lizorkin Spaces on Quantum Tori Book in PDF, Epub and Kindle

This paper gives a systematic study of Sobolev, Besov and Triebel-Lizorkin spaces on a noncommutative -torus (with a skew symmetric real -matrix). These spaces share many properties with their classical counterparts. The authors prove, among other basic properties, the lifting theorem for all these spaces and a Poincaré type inequality for Sobolev spaces.

Szego Kernel Asymptotics for High Power of CR Line Bundles and Kodaira Embedding Theorems on CR Manifolds

Szego Kernel Asymptotics for High Power of CR Line Bundles and Kodaira Embedding Theorems on CR Manifolds
Title Szego Kernel Asymptotics for High Power of CR Line Bundles and Kodaira Embedding Theorems on CR Manifolds PDF eBook
Author Chin-Yu Hsiao
Publisher American Mathematical Soc.
Pages 154
Release 2018-08-09
Genre Mathematics
ISBN 1470441012

Download Szego Kernel Asymptotics for High Power of CR Line Bundles and Kodaira Embedding Theorems on CR Manifolds Book in PDF, Epub and Kindle

Let X be an abstract not necessarily compact orientable CR manifold of dimension 2n−1, n⩾2, and let Lk be the k-th tensor power of a CR complex line bundle L over X. Given q∈{0,1,…,n−1}, let □(q)b,k be the Gaffney extension of Kohn Laplacian for (0,q) forms with values in Lk. For λ≥0, let Π(q)k,≤λ:=E((−∞,λ]), where E denotes the spectral measure of □(q)b,k. In this work, the author proves that Π(q)k,≤k−N0F∗k, FkΠ(q)k,≤k−N0F∗k, N0≥1, admit asymptotic expansions with respect to k on the non-degenerate part of the characteristic manifold of □(q)b,k, where Fk is some kind of microlocal cut-off function. Moreover, we show that FkΠ(q)k,≤0F∗k admits a full asymptotic expansion with respect to k if □(q)b,k has small spectral gap property with respect to Fk and Π(q)k,≤0 is k-negligible away the diagonal with respect to Fk. By using these asymptotics, the authors establish almost Kodaira embedding theorems on CR manifolds and Kodaira embedding theorems on CR manifolds with transversal CR S1 action.

The Maslov Index in Symplectic Banach Spaces

The Maslov Index in Symplectic Banach Spaces
Title The Maslov Index in Symplectic Banach Spaces PDF eBook
Author Bernhelm Booß-Bavnbek
Publisher American Mathematical Soc.
Pages 134
Release 2018-03-19
Genre Mathematics
ISBN 1470428008

Download The Maslov Index in Symplectic Banach Spaces Book in PDF, Epub and Kindle

The authors consider a curve of Fredholm pairs of Lagrangian subspaces in a fixed Banach space with continuously varying weak symplectic structures. Assuming vanishing index, they obtain intrinsically a continuously varying splitting of the total Banach space into pairs of symplectic subspaces. Using such decompositions the authors define the Maslov index of the curve by symplectic reduction to the classical finite-dimensional case. The authors prove the transitivity of repeated symplectic reductions and obtain the invariance of the Maslov index under symplectic reduction while recovering all the standard properties of the Maslov index. As an application, the authors consider curves of elliptic operators which have varying principal symbol, varying maximal domain and are not necessarily of Dirac type. For this class of operator curves, the authors derive a desuspension spectral flow formula for varying well-posed boundary conditions on manifolds with boundary and obtain the splitting formula of the spectral flow on partitioned manifolds.