The Schrodinger Model for the Minimal Representation of the Indefinite Orthogonal Group $O(p,q)$

The Schrodinger Model for the Minimal Representation of the Indefinite Orthogonal Group $O(p,q)$
Title The Schrodinger Model for the Minimal Representation of the Indefinite Orthogonal Group $O(p,q)$ PDF eBook
Author Toshiyuki Kobayashi
Publisher American Mathematical Soc.
Pages 145
Release 2011
Genre Mathematics
ISBN 0821847570

Download The Schrodinger Model for the Minimal Representation of the Indefinite Orthogonal Group $O(p,q)$ Book in PDF, Epub and Kindle

The authors introduce a generalization of the Fourier transform, denoted by $\mathcal{F}_C$, on the isotropic cone $C$ associated to an indefinite quadratic form of signature $(n_1,n_2)$ on $\mathbb{R}^n$ ($n=n_1+n_2$: even). This transform is in some sense the unique and natural unitary operator on $L^2(C)$, as is the case with the Euclidean Fourier transform $\mathcal{F}_{\mathbb{R}^n}$ on $L^2(\mathbb{R}^n)$. Inspired by recent developments of algebraic representation theory of reductive groups, the authors shed new light on classical analysis on the one hand, and give the global formulas for the $L^2$-model of the minimal representation of the simple Lie group $G=O(n_1+1,n_2+1)$ on the other hand.

The Schrödinger Model for the Minimal Representation of the Indefinite Orthogonal Group O(p, Q)

The Schrödinger Model for the Minimal Representation of the Indefinite Orthogonal Group O(p, Q)
Title The Schrödinger Model for the Minimal Representation of the Indefinite Orthogonal Group O(p, Q) PDF eBook
Author Toshiyuki Kobayashi
Publisher
Pages 132
Release 2011
Genre MATHEMATICS
ISBN 9781470406172

Download The Schrödinger Model for the Minimal Representation of the Indefinite Orthogonal Group O(p, Q) Book in PDF, Epub and Kindle

Quantum Theory, Groups and Representations

Quantum Theory, Groups and Representations
Title Quantum Theory, Groups and Representations PDF eBook
Author Peter Woit
Publisher Springer
Pages 659
Release 2017-11-01
Genre Science
ISBN 3319646125

Download Quantum Theory, Groups and Representations Book in PDF, Epub and Kindle

This text systematically presents the basics of quantum mechanics, emphasizing the role of Lie groups, Lie algebras, and their unitary representations. The mathematical structure of the subject is brought to the fore, intentionally avoiding significant overlap with material from standard physics courses in quantum mechanics and quantum field theory. The level of presentation is attractive to mathematics students looking to learn about both quantum mechanics and representation theory, while also appealing to physics students who would like to know more about the mathematics underlying the subject. This text showcases the numerous differences between typical mathematical and physical treatments of the subject. The latter portions of the book focus on central mathematical objects that occur in the Standard Model of particle physics, underlining the deep and intimate connections between mathematics and the physical world. While an elementary physics course of some kind would be helpful to the reader, no specific background in physics is assumed, making this book accessible to students with a grounding in multivariable calculus and linear algebra. Many exercises are provided to develop the reader's understanding of and facility in quantum-theoretical concepts and calculations.

Symmetry Breaking for Representations of Rank One Orthogonal Groups

Symmetry Breaking for Representations of Rank One Orthogonal Groups
Title Symmetry Breaking for Representations of Rank One Orthogonal Groups PDF eBook
Author Toshiyuki Kobayashi
Publisher American Mathematical Soc.
Pages 124
Release 2015-10-27
Genre Mathematics
ISBN 147041922X

Download Symmetry Breaking for Representations of Rank One Orthogonal Groups Book in PDF, Epub and Kindle

The authors give a complete classification of intertwining operators (symmetry breaking operators) between spherical principal series representations of and . They construct three meromorphic families of the symmetry breaking operators, and find their distribution kernels and their residues at all poles explicitly. Symmetry breaking operators at exceptional discrete parameters are thoroughly studied. The authors obtain closed formulae for the functional equations which the composition of the symmetry breaking operators with the Knapp-Stein intertwining operators of and satisfy, and use them to determine the symmetry breaking operators between irreducible composition factors of the spherical principal series representations of and . Some applications are included.

An Introduction to Lie Groups and Lie Algebras

An Introduction to Lie Groups and Lie Algebras
Title An Introduction to Lie Groups and Lie Algebras PDF eBook
Author Alexander A. Kirillov
Publisher Cambridge University Press
Pages 237
Release 2008-07-31
Genre Mathematics
ISBN 0521889693

Download An Introduction to Lie Groups and Lie Algebras Book in PDF, Epub and Kindle

This book is an introduction to semisimple Lie algebras. It is concise and informal, with numerous exercises and examples.

A Journey Through Representation Theory

A Journey Through Representation Theory
Title A Journey Through Representation Theory PDF eBook
Author Caroline Gruson
Publisher Springer
Pages 231
Release 2018-10-23
Genre Mathematics
ISBN 3319982710

Download A Journey Through Representation Theory Book in PDF, Epub and Kindle

This text covers a variety of topics in representation theory and is intended for graduate students and more advanced researchers who are interested in the field. The book begins with classical representation theory of finite groups over complex numbers and ends with results on representation theory of quivers. The text includes in particular infinite-dimensional unitary representations for abelian groups, Heisenberg groups and SL(2), and representation theory of finite-dimensional algebras. The last chapter is devoted to some applications of quivers, including Harish-Chandra modules for SL(2). Ample examples are provided and some are revisited with a different approach when new methods are introduced, leading to deeper results. Exercises are spread throughout each chapter. Prerequisites include an advanced course in linear algebra that covers Jordan normal forms and tensor products as well as basic results on groups and rings.

Dirichlet Branes and Mirror Symmetry

Dirichlet Branes and Mirror Symmetry
Title Dirichlet Branes and Mirror Symmetry PDF eBook
Author
Publisher American Mathematical Soc.
Pages 698
Release 2009
Genre Mathematics
ISBN 0821838482

Download Dirichlet Branes and Mirror Symmetry Book in PDF, Epub and Kindle

Research in string theory has generated a rich interaction with algebraic geometry, with exciting work that includes the Strominger-Yau-Zaslow conjecture. This monograph builds on lectures at the 2002 Clay School on Geometry and String Theory that sought to bridge the gap between the languages of string theory and algebraic geometry.